Machine Learning kann Liquidität steigern

Volle Auftragsbücher und trotzdem insolvent – dieses Schicksal kann selbst stabile Unternehmen ereilen, wenn ihre Großkunden nicht pünktlich zahlen. Dabei lässt sich die Liquidität sichern, wenn rechtzeitig die richtigen Infos bereitstehen. Machine Learning macht genau das jetzt automatisiert möglich.

Intelligentes Forderungsmanagement

Machine Learning kann Liquidität steigern

Bild: ©peshkova/stock.adobe.com

Volle Auftragsbücher und trotzdem insolvent – dieses Schicksal kann selbst stabile Unternehmen ereilen, wenn ihre Großkunden nicht pünktlich zahlen. Dabei lässt sich die Liquidität sichern, wenn rechtzeitig die richtigen Infos bereitstehen. Machine Learning macht genau das jetzt automatisiert möglich.


Es kann viele Gründe geben, warum Kunden ihre Rechnungen nicht oder nur zögerlich begleichen. Meist liegt es an einer verspäteten Lieferung oder an mangelnder Produktqualität. Für den Lieferanten ist in jedem Fall ein schnelles und effektives Forderungsmanagement wichtig. Doch der idealtypische Prozess scheitert oft an der Realität. Im Normalfall sollten sämtliche offenen Zahlungen effizient – am besten automatisch – eingefordert werden. Der Rechnungsempfänger wird nicht nur rechtzeitig, sondern vor allem wirkungsvoll an seine Zahlungspflicht erinnert und um Erledigung gebeten.

Trotzdem steuern auch große Unternehmen diesen Prozess häufig noch mit veralteten Programmen, z.B. mit Tabellenkalkulation. „Diese vermeintlich kostengünstige Variante ist jedoch oft sehr ineffizient“, sagt Philipp Nies, Senior Consultant SAP Finance bei Deloitte. „Gerade im Forderungsmanagement zahlt es sich aus, die IT als wertschöpfend und nicht als Kostenfaktor zu betrachten.“

Tatsächlich spart man in Forderungsabteilungen vergleichsweise am häufigsten. Laut einer Studie schieben Unternehmen die Digitalisierung des Bereichs seit Jahren auf die lange Bank. Innovationen wie künstliche Intelligenz und Big-Data-Analysen bleiben anderen Geschäftsbereichen vorbehalten. Die Folge: Laut eigenen Aussagen haben 91 Prozent der Abteilungen heute Mühe, mit dem technologischen Wandel Schritt zu halten.

Was ein gutes Forderungsmanagement heute kann

Welche Vorteile hat ein integriertes Forderungsmanagement im Vergleich zu Excel und anderen ähnlichen Programmen? Es liefert eine zentrale Übersicht über alle Details eines Klärungsfalls. Die meisten Prozesse laufen automatisch nach definierten Regeln ab.

Statt sich in Kleinigkeiten zu verlieren, gewinnen Sachbearbeiter ein ganzheitliches Bild und damit mehr Kontrolle über die Abläufe. Außerdem können sie Verbindlichkeiten und Forderungen live überwachen. Entsprechend schnell können sie risikobehaftete Debitorengruppen ermitteln und auf Entwicklungen am Markt reagieren. Diese Transparenz macht sich letztlich in einem konstruktiveren und effizienteren Umgang mit den Kunden und einem insgesamt besseren Cashflow bemerkbar.

Unterwegs zum proaktiven Forderungsmanagement

Deloitte bietet mit „Reimagine Collections and Disputes“ eine contentbasierte Lösung an, die erstmals Machine Learning für das Forderungsmanagement nutzbar macht. Die Software automatisiert Prozesse, die bislang nur Menschen erledigen konnten und basiert auf SAP Leonardo.

Die Lösung prüft Daten wie die Historie von Kundentransaktionen oder die Zahl gelöster Klärungsfälle. So kann sie vorhersagen, wie wahrscheinlich eine Reklamation bei einer bestimmten Rechnung ist. Die Software stößt darüber hinaus automatisch Prozesse an, die dabei helfen, den Sachverhalt aufzuklären. Und sie lernt dazu, wird täglich intelligenter und präziser.

SAP Deutschland SE & Co. KG
www.sap.com

News

Fachbeiträge

Weitere Fachbeiträge

Die Demokratisierung von maschinellem Lernen in der Industrie

Seit mehreren Jahren dringt die Digitalisierung immer weiter in die industrielle Produktion vor. Die Verheißungen, durch Datenerhebung und -analyse die eigene Effizienz und Produktivität zu steigern sowie neue datenbasierte Geschäftsmodelle zu entwickeln, klingen vielversprechend in einem Zeitalter, in dem die meisten Unternehmen auf der Suche nach neuen Wachstumsmöglichkeiten sind. Ein Bereich, dem ein enormes Potenzial zugeschrieben wird, ist künstliche Intelligenz bzw. Machine Learning. Ein Kommentar von Tobias Gaukstern, Leiter der Business Unit Industrial Analytics bei Weidmüller.

Entwicklungsprognose

Entwicklungsprognose Trends für die Fabrik der Zukunft Wohin entwickeln sich die Fabriken in den nächsten Jahren? Philipp Wallner von MathWorks wagt die Prognose, das fünf Faktoren darunter sein werden, die individuelles Fertigen und Ressourceneffizienz in Einklang...

Künstliche Intelligenz für Gebäude

Künstliche Intelligenz (KI) gilt als Schlüsseltechnologie der kommenden Jahre für die Bereiche Autonomes Fahren, Industrie 4.0 und Medizintechnik. Auch im Gebäudemanagement setzt man längst auf automatisierte Lösungen. Bei neuen Bauvorhaben wünschen sich Betreiber immer häufiger smarte Technologien. Gebäude werden mit einer Vielzahl an Sensoren ausgestattet: von IP-Kameras über Feuer- und Rauchmelder, Thermostatregler und weiteren Überwachungssystemen für Heiz-, Lüftungs- und Klimatechnik bis hin zu biometrischen Lesegeräten für die Zutrittskontrolle. All diese IP-Geräte werden mit jeder Entwicklungsstufe immer intelligenter. Werden sie alle mittels Software vernetzt, entsteht ein intelligentes Gebäude.

Cyber-Bedrohungen 2020

Fortgeschrittene KI und intelligente Bedrohungs-Desinformation Cyber-Bedrohungen 2020 Der Cybersecurity-Anbieter Fortinet hat die Prognosen von FortiGuard Labs zur Bedrohungslandschaft für 2020 veröffentlicht. Die Analysten von Fortinet zeigen darin Methoden, die...

Lernende Objekterkennung in Echtzeit

Heutige Inspektionsssteme sind auf wenige, sehr akkurat justierte Objekttypen herstellerseitig justiert. Kommen neue Produkttypen hinzu, müssen die Systeme zeitaufwendig neu justiert werden. Die KI-Inspektionsplatform von Gestalt Robotics beseitigt diese Hürden.

Maschinenlernen eingebettet

Bisher wird der gewünschte Zusammenhang zwischen den jeweiligen Eingangs- und Ausgangsdaten einer Automatisierungsbaugruppe mittels wissensbasierter Regeln in einer Hoch- oder SPS-Programmiersprache kodiert und auf einem eingebetteten System ausgeführt. In Zukunft lassen sich Embedded Systeme in der Automatisierung auch per Supervised Machine Learning für eine bestimmte Aufgabenstellung trainieren.

Zwischen Regelwerk und Selbstlernen

Nach einer Studie von Gartner soll bis 2022 der Geschäftswert von KI auf 2,85 Billionen Euro steigen. Der Löwenanteil davon wird voraussichtlich auf den Bereich der Kundenerfahrung entfallen, für das schon ausgereifte Tools am Markt existieren. Dieser Überblick zeigt, wie es heute um KI im Field Service Management steht und wohin die Reise geht.

Psychometrie im Vertrieb

Psychometrie im Vertrieb Souffleuse für das Verkaufsgespräch Ein neuer Trend in der Marketing-Kommunikation ist die KI-gestützte Stimmungsanalyse der Gesprächspartner: Sentimentanalysen in Verbindung mit Spracherkennung wie bei Amazons Alexa, IBM Watson, oder Google...

Direkte Roboteransteuerung

Direkte Roboteransteuerung Mit dem Ziel der direkten Roboteransprache über die neue Steuerung SmoothAi haben Mazak und namhafte Roboterhersteller ihre Zusammenarbeit intensiviert. Den Kern der SmoothAi machen drei wesentliche Eigenschaften aus: das so genannte Machine...

News

→ MEHR