Der digitale Zwilling im Fahrzeugbau

Wie mit Daten die Entwicklung beschleunigt werden kann Der digitale Zwilling im Fahrzeugbau Fahrzeugbauer erhalten Erkenntnisse über die Qualität und Fahrverhalten neuer Automodelle unter Realbedingungen. Die dabei gesammelten Daten bilden jedoch immer häufiger die Basis für virtuelle Testumgebungen: Digitale Zwillinge erlauben die virtuelle Berechnung von Fahrphysik sowie einzelner Fahrzeugkomponenten bis hin zur Simulation ganzer Fahrereignisse. […]

Wie mit Daten die Entwicklung beschleunigt werden kann

Der digitale Zwilling im Fahrzeugbau

Bild: ©rook76/Fotolia.de

Fahrzeugbauer erhalten Erkenntnisse über die Qualität und Fahrverhalten neuer Automodelle unter Realbedingungen. Die dabei gesammelten Daten bilden jedoch immer häufiger die Basis für virtuelle Testumgebungen: Digitale Zwillinge erlauben die virtuelle Berechnung von Fahrphysik sowie einzelner Fahrzeugkomponenten bis hin zur Simulation ganzer Fahrereignisse. Moderne Data-Processing-Verfahren sind dabei nicht nur unabdingbar. Auf Grundlage der Datenauswertung kann das Fahrerlebnis optimiert und die Wartung erleichtert werden. Das Potenzial von Big Data aus dem PKW reicht bis hin zur Unterstützung autonomer Mobilitätsszenarien.


Je intelligenter – und damit in der gewünschten Konsequenz auch autonomer – Fahrzeuge und ihre On-Board-Systeme werden, umso mehr tritt auch das Thema Softwareentwicklung für die Automotive-Branche in den Fokus. Schon heute liegen Unmengen an digitalen Informationen vor, die von modernen Fahrzeugen produziert werden und deren Umfang künftig sicherlich weiterwachsen wird. Damit sind Themen wie Software Development, Machine Learning und Data Processing auch bei den Fahrzeugherstellern längst erfolgskritische Größen. Werden Informationen zum physischen Fahrverhalten des PKW unter verschiedensten Witterungsbedingungen und den Metadaten aus Design, Produktion und After-Sales mit synthetischen Ereignismodellen integriert, entstehen Simulationsumgebungen, die hohe Anforderungen an die Datenverarbeitung stellen. Die gute Nachricht ist, dass parallel zur schieren Datenmasse allerdings auch die Möglichkeiten zur Verarbeitung von Big Data wachsen.

Deutliche Effizienzsteigerungen im Messdatenmanagement

Gigantische Datenvolumina aus dem Auto, darunter auch non-binäre Signaldaten, lassen sich inzwischen besser und schneller parallel übertragen. Eine unabhängige Analyse unterschiedlichster Datenquellen, -typen und -klassen ist damit ebenfalls realisierbar. Ausgereifte Signal-Processing-Verfahren sorgen dafür, dass Daten auf bis zu zehn Prozent des ursprünglichen Volumens reduziert werden und die Datenbereitstellung daher mittlerweile um den Faktor 40 im Vergleich zu bisher eingesetzten Standardverfahren beschleunigt werden kann. Intelligente Big-Data-Verfahren haben gelernt, sowohl die immensen Datenmengen aus der Fahrzeugsensorik, als auch die dazugehörigen Backend-Logdateien flexibel und effizient zu verarbeiten. Damit können die Analyse und Auswertung von Testkennzahlen sowie die Ergebnisse aus Prüfstands-Experimenten mit einem zunehmend höheren Automatisierungsgrad durchgeführt werden. Der Einsatz von sogenannten Digitalen Mock-Ups (DMUs), also eines virtuellen Spiegelbilds des zugehörigen Fahrzeug-Backends, liefert stichhaltige Analysen, ohne ein neues Gerät direkt mit dem Fahrzeug in der Praxis testen zu müssen.

Unterschiedliche Formate verlangen nach einheitlicher Kodierung

Lange Zeit bestand im Messdatenmanagement die wesentliche Herausforderung darin, unterschiedliche Aufzeichnungsformate unter einen Hut zu bekommen und damit eine parallele Datenübertragung zu ermöglichen. Datentypen wie etwa ASAM MDF oder ATFX konnten für eine parallele Verarbeitung nicht genutzt werden. Diese Problematik wurde vor allem durch die Format- und Kodierungswechsel einzelner Samples hervorgerufen – ein Phänomen, das entsteht, wenn Signale aus den Sensoren und Geräten mit unterschiedlichen Nachrichtentypen und -frequenzen aufgezeichnet werden. Big Data Frameworks wie Hadoop können die strukturelle Heterogenität der Momentaufnahmen aus den Sensor-Clustern und Statusberichten der einzelnen Geräte kaum handhaben. Neuartige Verfahren, wie etwa Norcom Dasense oder Big Data Signal Processing (BDSP), schlüsseln die Simulationsdateien MDF4, DAT oder CSV oder die Trace-Formate ASC, ATFX, ADTF und VPCAP auf und wandeln sie in verteilte Formate wie beispielsweise ORC oder Parquet um. Sowohl die Transkodierung als auch die Analyse der Messdaten finden in einem skalierbaren Computer-Cluster statt – so können auch ad hoc schnell große Datenvolumen abgearbeitet werden. Die Reduzierung der Originaldaten auf zehn Prozent ihrer ursprünglichen Größe ist im Wesentlichen durch zwei Faktoren möglich: Zum einen verzichtet BDSP auf die Sample-basierte Darstellung der ursprünglichen Messdaten; zum anderen werden Signalredundanzen minimiert. Ein weiterer Vorteil einer intelligenten Transkodierung liegt darin, dass die umgewandelten Big-Data-Formate gleich die nötigen Berechnungsvorschriften erfüllen, um Analysen auf möglichst vielen Maschinen parallel durchführen zu können. Typische Engineering-Fragestellungen zu Steuerprozessen, On-Board-Funktionen und Fahrzeugverhalten können so binnen weniger Minuten beantwortet werden.

Seiten: 1 2Auf einer Seite lesen

T-Systems International GmbH
www.t-systems.de

News

Fachbeiträge

Weitere Fachbeiträge

Die Demokratisierung von maschinellem Lernen in der Industrie

Seit mehreren Jahren dringt die Digitalisierung immer weiter in die industrielle Produktion vor. Die Verheißungen, durch Datenerhebung und -analyse die eigene Effizienz und Produktivität zu steigern sowie neue datenbasierte Geschäftsmodelle zu entwickeln, klingen vielversprechend in einem Zeitalter, in dem die meisten Unternehmen auf der Suche nach neuen Wachstumsmöglichkeiten sind. Ein Bereich, dem ein enormes Potenzial zugeschrieben wird, ist künstliche Intelligenz bzw. Machine Learning. Ein Kommentar von Tobias Gaukstern, Leiter der Business Unit Industrial Analytics bei Weidmüller.

Entwicklungsprognose

Entwicklungsprognose Trends für die Fabrik der Zukunft Wohin entwickeln sich die Fabriken in den nächsten Jahren? Philipp Wallner von MathWorks wagt die Prognose, das fünf Faktoren darunter sein werden, die individuelles Fertigen und Ressourceneffizienz in Einklang...

Künstliche Intelligenz für Gebäude

Künstliche Intelligenz (KI) gilt als Schlüsseltechnologie der kommenden Jahre für die Bereiche Autonomes Fahren, Industrie 4.0 und Medizintechnik. Auch im Gebäudemanagement setzt man längst auf automatisierte Lösungen. Bei neuen Bauvorhaben wünschen sich Betreiber immer häufiger smarte Technologien. Gebäude werden mit einer Vielzahl an Sensoren ausgestattet: von IP-Kameras über Feuer- und Rauchmelder, Thermostatregler und weiteren Überwachungssystemen für Heiz-, Lüftungs- und Klimatechnik bis hin zu biometrischen Lesegeräten für die Zutrittskontrolle. All diese IP-Geräte werden mit jeder Entwicklungsstufe immer intelligenter. Werden sie alle mittels Software vernetzt, entsteht ein intelligentes Gebäude.

Cyber-Bedrohungen 2020

Fortgeschrittene KI und intelligente Bedrohungs-Desinformation Cyber-Bedrohungen 2020 Der Cybersecurity-Anbieter Fortinet hat die Prognosen von FortiGuard Labs zur Bedrohungslandschaft für 2020 veröffentlicht. Die Analysten von Fortinet zeigen darin Methoden, die...

Lernende Objekterkennung in Echtzeit

Heutige Inspektionsssteme sind auf wenige, sehr akkurat justierte Objekttypen herstellerseitig justiert. Kommen neue Produkttypen hinzu, müssen die Systeme zeitaufwendig neu justiert werden. Die KI-Inspektionsplatform von Gestalt Robotics beseitigt diese Hürden.

Maschinenlernen eingebettet

Bisher wird der gewünschte Zusammenhang zwischen den jeweiligen Eingangs- und Ausgangsdaten einer Automatisierungsbaugruppe mittels wissensbasierter Regeln in einer Hoch- oder SPS-Programmiersprache kodiert und auf einem eingebetteten System ausgeführt. In Zukunft lassen sich Embedded Systeme in der Automatisierung auch per Supervised Machine Learning für eine bestimmte Aufgabenstellung trainieren.

Zwischen Regelwerk und Selbstlernen

Nach einer Studie von Gartner soll bis 2022 der Geschäftswert von KI auf 2,85 Billionen Euro steigen. Der Löwenanteil davon wird voraussichtlich auf den Bereich der Kundenerfahrung entfallen, für das schon ausgereifte Tools am Markt existieren. Dieser Überblick zeigt, wie es heute um KI im Field Service Management steht und wohin die Reise geht.

Psychometrie im Vertrieb

Psychometrie im Vertrieb Souffleuse für das Verkaufsgespräch Ein neuer Trend in der Marketing-Kommunikation ist die KI-gestützte Stimmungsanalyse der Gesprächspartner: Sentimentanalysen in Verbindung mit Spracherkennung wie bei Amazons Alexa, IBM Watson, oder Google...

Direkte Roboteransteuerung

Direkte Roboteransteuerung Mit dem Ziel der direkten Roboteransprache über die neue Steuerung SmoothAi haben Mazak und namhafte Roboterhersteller ihre Zusammenarbeit intensiviert. Den Kern der SmoothAi machen drei wesentliche Eigenschaften aus: das so genannte Machine...

News

→ MEHR