- Anzeige -
- Anzeige -
Lesedauer: min
Der alte Kampf mit neuen Waffen

Nov 22, 2019 | Technologie

Künstliche Intelligenz und IT-Sicherheit

Der alte Kampf mit neuen Waffen

Bild: ©Gorodenkoff/stock.adobe.com

Der einzige Trost beim Thema künstliche Intelligenz und Cybersicherheit? Dass auch die Angreifer nicht verstehen, wie die technologische Black Box KI genau funktioniert. Steve Rymell, Technikchef bei Airbus CyberSecurity, berichtet über die Notwendigkeit, künstliche Intelligenz auf dem Feld der IT-Sicherheit im Auge zu behalten – ohne ihr freilich einen Sonderstatus zuzuweisen.


Eines der auffälligsten Probleme der Cybersicherheitsbranche ist, dass Angreifer oft in der Lage sind, Verteidigern scheinbar mühelos einen Schritt voraus zu sein. Die grundsätzlichen Ursachen sind hier meist technischer Natur. Bestes Beispiel sind Software-Schwachstellen, die Cyberkriminelle in der Regel vor Anbietern und ihren Kunden aufdecken. Gegen dieses sogenannte Zero-Day-Phänomen bei vielen bekannten Cyberattacken sind selbst Sicherheitsexperten nahezu machtlos. Zudem machen Unternehmen, die mit der Komplexität neuer Technologien zu kämpfen haben, Fehler und lassen unbeabsichtigt gefährdete Ports und Services ungeschützt. Ein besonders drastisches Beispiel dafür sind Tools und Infrastrukturen, die Organisationen eigentlich dabei helfen sollten, sich zu verteidigen (z.B. Shodan, aber auch zahlreiche Pen-Test-Tools), mittlerweile aber genauso von Angreifern, die in Netzwerke eindringen, gegen Unternehmen eingesetzt werden können. Hinzu kommt, dass moderne Malware derart vielseitig auftreten kann, dass Angreifer fast unaufhaltsam erscheinen. So betonen selbst Sicherheitsanbieter zunehmend die Notwendigkeit, Angriffe nicht zu blockieren, sondern stattdessen so schnell wie möglich auf diese zu reagieren.

Der KI-Gegenangriff

Vor einigen Jahren gingen einige, meist in den USA ansässige, Startups mit einer mutigen neuen Idee zu einer Art Gegenangriff über – Machine-Learning-Security durch Algorithmen. Machine Learning (ML) wird hauptsächlich verwendet, um Daten zu kategorisieren, die mit Datenklassen übereinstimmen, die für das Training des ML-Algorithmus verwendet werden. Die Ansprüche an die KI im Cyberspace ist die Fähigkeit, Zero-Day-Malware oder Anomalien im Netzwerkverkehr zu erkennen. Dies ist ein Schritt weg von der Identifikation bereits bekannter Bedrohungen hin zum Versuch, das Unbekannte zu erkennen. Es handelt sich also um eine Weiterentwicklung der ML-Techniken, die es (in einigen Fällen) ermöglicht hat, die Raten von falsch-positiven und falsch-negativen Meldungen auf ein Niveau zu reduzieren, auf dem die Technologie nützlich sein kann. Große Unternehmen scannen möglicherweise Tausende von Dateien pro Tag, sodass selbst eine False-Positive-Rate von einigen Prozent in absoluten Zahlen ein Problem darstellen würde. Im Zeitalter von Big Data kann diese Herangehensweise durchaus sinnvoll sein, die Idee wurde deshalb auch von verschiedenen Systemen zur Bekämpfung von Spam, Malware-Erkennung, Bedrohungsanalyse und -aufklärung sowie zur Automatisierung des Security Operations Centre (SoC) aufgegriffen, wo sie auch dem Fachkräftemangel entgegenwirkt.

Kaum jemand versteht die Black Box

Bei allen Fortschritten wird dieser Ansatz von manchen auch als ultimatives Beispiel für Technologie als Black Box bezeichnet, die niemand wirklich versteht. Der Großteil der KI basiert auf maschinellem Lernen, das im Wesentlichen eine statistische Technik ist, die Ereignisse oberhalb einer bestimmten Schwelle meldet. Bei unüberwachtem Lernen (d.h. das System aktualisiert sich ständig in Abhängigkeit von den bisherigen Ergebnissen) gibt es nicht einmal die Garantie, für die gleiche Eingabe das gleiche Ergebnis zweimal zu erhalten, es ist also nicht deterministisch. Daher ist es schwierig, einen Benchmark zu schaffen, die Ergebnisse sind als Beweis nicht zulässig. Stattdessen ist zur Überprüfung der Ergebnisse immer eine weitere Analyse erforderlich. Woher wissen wir, dass Machine Learning in der Lage ist, neue und unbekannte Angriffstypen zu erkennen, die herkömmliche Systeme nicht erkennen? Weil die Produktbroschüre dies sagt? Wie bereits erwähnt, garantiert das Training eines ML-Systems mit bekannter Malware nicht, dass es neue auch erkennt. Tatsächlich wird es wahrscheinlich nur routinemäßige Varianten der Malware erkennen, für die das System geschult wurde. Einige ML-Systeme sind daher kaum besser als Heuristiken oder Analytic Use Cases, die als Skripte für bekannte bösartige Aktivitäten entwickelt wurden. ML sollte daher nur als eines der Werkzeuge in der Analysten-Toolbox und nicht als eine einzige magische Lösung verstanden werden. Tatsächlich können schlecht konstruierte Systeme mit hohen False-Positive-Raten die oft begrenzte Zeit von Analysten verschwenden. Und weiter: Was sollte Angreifer davon abhalten, das defensive ML mit einem noch besseren zu überlisten? Wenn dies auch nur in wenigen Fällen möglich wäre, stehen wir wieder komplett am Anfang. Das ist natürlich reine Spekulation, denn bisher konnte kein Einsatz von KI in einem Cyberangriff nachgewiesen werden. Unser Verständnis davon, wie es funktionieren könnte, basiert weitgehend auf akademischer Forschung wie IBMs Proof-of-Concept DeepLocker Malware Project.

Seiten: 1 2Auf einer Seite lesen

Autor:
Firma:

News

- Anzeige -

Weitere Beiträge

Das könnte Sie auch interessieren

Studie von VDE und Bertelsmann Stiftung: KI-Ethik messbar machen

In einer neuen Studie zeigen die Technologieorganisation VDE und die Bertelsmann Stiftung, wie sich Ethikprinzipien für künstliche Intelligenz (KI) in die Praxis bringen lassen. Zwar gibt es eine Vielzahl an Initiativen, die ethische Richtlinien für die Gestaltung von KI veröffentlicht haben, allerdings bis dato kaum Lösungen für deren praktische Umsetzung. Genau hier setzt der VDE als Initiator und Leiter der ‚AI Ethics Impact Group‘ gemeinsam mit der Bertelsmann Stiftung an.

mehr lesen

KI in der medizinischen Diagnostik

Das Robotik Startup Robominds hat in Reaktion auf die aktuelle Corona-Pandemie eine Lösung entwickelt, die Roboterarme befähigt, Proben und Reagenzien für die medizinische Diagnostik vor zu sortieren. Auf Basis künstlicher Intelligenz erkennt das Soft-und Hardwaresystem Robobrain Position und Farbe der Probenröhrchen und kann diese ohne vorheriges Einlernen voll automatisiert vor- und einsortieren.

mehr lesen

Künstliche Intelligenz für ‚Beyond 5G‘

Während viele europäische Staaten gerade dabei sind, den Mobilfunk der 5. Generation aufzubauen, arbeitet die Forschung bereits an seiner Optimierung. Denn obwohl 5G seinen Vorgängern weit überlegen ist, hat auch der neueste Mobilfunkstandard noch Verbesserungspotenzial: Besonders in urbanen Gebieten, in denen ein direkter Sichtkontakt zwischen Sender und Empfänger erschwert ist, funktioniert die Funkverbindung oftmals noch nicht zuverlässig. In dem kürzlich gestarteten EU-Projekt Ariadne erforschen nun elf europäische Partner, wie sich durch die Nutzung von hohen Frequenzbändern und künstlicher Intelligenz eine fortschrittliche Systemarchitektur für »Beyond 5G« entwickeln lässt.

mehr lesen

Universität Stuttgart und IBM treiben KI-Forschung in Deutschland voran

IBM (NYSE: IBM) und die Universität Stuttgart gaben bekannt, dass die Universität als erste Institution in Europa dem AI Horizons Network beitritt, um im Rahmen einer mehrjährigen Kooperation die KI-Forschung zur Interaktion von Sprache und Wissen voranzutreiben. Das AI Horizons Network ist ein weltweites Netzwerk von Forschenden und Promovierenden, das von IBM ins Leben gerufen wurde, um in einer Reihe von Forschungsprojekten und Experimenten die Anwendung von künstlicher Intelligenz, maschinellem Lernen, maschineller Sprachverarbeitung und verwandter Technologien gemeinsam voranzubringen. Zum jetzigen Zeitpunkt sind weltweit bereits über 80 wissenschaftliche Arbeiten aus dem Netzwerk veröffentlicht worden.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.