- Anzeige -
- Anzeige -
Erste marktreife KI-Anwendung für Lackierereien
Advanced Analytics von Dürr ist die erste marktreife KI-Anwendung für Lackieranlagen. Die intelligente Lösung, die neueste IT-Technologie mit Maschinenbaukompetenz kombiniert, identifiziert Fehlerquellen und ermittelt optimale Wartungszeitpunkte. Zudem spürt sie bislang unbekannte Zusammenhänge auf und passt mit diesem Wissen selbstlernend den Algorithmus an der Anlage an. Advanced Analytics ist das neueste Modul aus der Produktfamilie DXQanalyze. Erste Praxiseinsätze belegen, dass die Software von Dürr die Anlagenverfügbarkeit und die Oberflächenqualität lackierter Karosserien optimiert.
Die KI-Anwendung Advanced Analytics von Dürr identifiziert Fehlerquellen und ermittelt optimale Wartungszeitpunkte.
Die KI-Anwendung Advanced Analytics von Dürr identifiziert Fehlerquellen und ermittelt optimale Wartungszeitpunkte.Bild: Dürr Systems AG

Warum tritt an einem Karosserieteil ungewöhnlich häufig derselbe Fehler auf? Wann ist der späteste Zeitpunkt, einen Mischer im Roboter auszutauschen, ohne einen Maschinenstillstand zu provozieren? Exakte Antworten sind wichtig für einen nachhaltig ökonomischen Erfolg. Denn jeder Fehler oder jeder unnötige Wartungseinsatz, der sich vermeiden lässt, spart Geld oder verbessert die Produktqualität. „Präzise Aussagen zur Früherkennung von Qualitätsmängeln oder Ausfällen gibt es bisher kaum. Und wenn, basieren sie in der Regel auf einer mühsamen analogen Datenauswertung oder Trial-and-Error-Versuchen. Mit künstlicher Intelligenz (KI) geht das jetzt wesentlich genauer und automatisch“, erklärt Gerhard Alonso Garcia, Vice President MES & Control Systems bei Dürr.

Die neue selbstlernende Anlagen- und Prozessüberwachung Advanced Analytics erweitert DXQanalyze. Die digitale Produktfamilie von Dürr beinhaltete bereits die Module Data Acquisition für die Erfassung von Produktionsdaten, Visual Analytics für deren Visualisierung sowie Streaming Analytics. Mit letzterem können Anlagenbetreiber nahezu in Echtzeit mit Hilfe einer sogenannten Low-Code-Plattform analysieren, ob es in der Produktion zu Abweichungen von zuvor festgelegten Regeln oder Sollwerten kommt.

KI-Applikation mit eigenem Gedächtnis

Advanced Analytics kombiniert große Datenmengen einschließlich historischer Daten mit maschinellem Lernen. Im übertragenen Sinne bedeutet das: Die selbstlernende KI-Applikation besitzt ein Gedächtnis. Dadurch kann sie, basierend auf den Informationen aus der Vergangenheit, sowohl komplexe Zusammenhänge in großen Datenmengen erkennen, als auch anhand des aktuellen Zustands einer Maschine ein Ereignis in der Zukunft sehr exakt prognostizieren. Dafür gibt es viele Anwendungsfälle in Lackieranlagen – auf der Komponenten-, Prozess- und Anlagenebene.

Durch prädiktive Wartungs- und Instandhaltungsinformationen kann die Dürr-Software die Downtime von Lackieranlagen verringern.
Durch prädiktive Wartungs- und Instandhaltungsinformationen kann die Dürr-Software die Downtime von Lackieranlagen verringern.Bild: Dürr Systems AG

Vorausschauende Wartung verringert Anlagenstillstand

Im Bereich der Komponenten zielt Advanced Analytics darauf ab, die Downtime durch prädiktive Wartungs- und Instandhaltungsinformationen zu verringern, wie etwa durch die Prognose der verbleibenden Lebensdauer eines Mischers. Wird das Bauteil zu früh getauscht, erhöht das unnötig die Ersatzteilkosten und Instandhaltungsaufwände, während ein zu später Tausch zu Qualitätsproblemen bei der Beschichtung und zu einem Maschinenstillstand führen kann. Advanced Analytics erlernt zunächst anhand hochfrequenter Roboterdaten die Verschleißindikatoren und das zeitliche Muster des Verschleißes. Da die Daten kontinuierlich erfasst und überwacht werden, erkennt das Machine-Learning-Modul – basierend auf der tatsächlichen Nutzung – Alterungstrends individuell für die jeweilige Komponente und berechnet so den optimalen Austauschzeitpunkt.

Mit Künstlicher Intelligenz können systematische Fehler im Lackierprozess aufgespürt und so die OEE gesteigert werden.
Mit künstlicher Intelligenz können systematische Fehler im Lackierprozess aufgespürt und so die OEE gesteigert werden. – Bild: Dürr Systems AG

Machine Learning simuliert kontinuierliche Temperaturkurven

Die KI-Lösung verbessert die Qualität auf der Prozessebene, indem es Anomalien feststellt, etwa durch eine Simulation der Aufheizkurve im Trockner. Bisher stehen den Herstellern nur Daten zur Verfügung, die Sensoren bei Messfahrten ermitteln. Die Aufheizkurven, die für die Oberflächenqualität der Karosserie von entscheidender Bedeutung sind, verändern sich jedoch, da der Trockner in den Intervallen zwischen den Messfahrten altert. Der Verschleiß bewirkt schwankende Umgebungsbedingungen, etwa bei der Stärke des Luftstroms. „Heutzutage werden Tausende Karosserien produziert, ohne dass wir wissen, auf welche Temperaturen die einzelne Karosserie aufgeheizt wurde. Durch das maschinelle Lernen simuliert unser Machine-Learning-Modul, wie sich die Temperatur bei unterschiedlichen Bedingungen verändert. Dadurch erhalten unsere Kunden einen permanenten Qualitätsnachweis für jede Einzelkarosserie und können Anomalien feststellen“, sagt Gerhard Alonso Garcia.

Seiten: 1 2 3Auf einer Seite lesen

- Anzeige -
- Anzeige -

Das könnte Sie auch Interessieren

Bild: IFW
Bild: IFW
Maschinen fehlerlos einfahren

Maschinen fehlerlos einfahren

Transfer von Wissen zwischen Maschinen für die Überwachung - Bild: IFW Durch die Auswertung von Prozessdaten aus Werkzeugmaschinen können Fehler etwa beim Einfahren früh erkannt werden. Durch die Digitalisierung der Fertigung stehen dafür immer größere Datenmengen zur...

Bild: ITQ GmbH
Bild: ITQ GmbH
Website Relaunch

Website Relaunch

Bild: ITQ GmbH Die ITQ GmbH hat ihre Website vollständig überarbeitet. Interessierte Kunden und Bewerber finden mit wenigen Klicks alle Informationen zu den Kernkompetenzen Software und Systems Engineering, Mechatronic Consulting sowie Digital Education. Alle Bereiche...