- Anzeige -
Machine Learning in der Fertigungs-IT
Die Bandbreite an Analyseanwendungen reicht von klassischen Reports und Kennzahlen über Self Service Analytics bis hin zu künstlicher Intelligenz. Bei aller Vielfalt sollte der Zweck nicht aus dem Fokus geraten: transparenter und effizienter fertigen zu können. Zumal immer wieder neue Manufacturing-Analytics-Instrumente entwickelt werden.

Machine Learning in der Fertigungs-IT

Manufacturing Analytics und KI

Bild: ©nd3000/stock.adobe.com / MPDV Mikrolab GmbH

Um wettbewerbsfähig produzieren zu können, brauchen Fertigungsunternehmen bestmögliche Transparenz. Denn nur wer weiß, wie es im Shopfloor gerade läuft, kann an den geeigneten Stellschrauben drehen und die Prozesse optimieren. Über die Jahre haben sich Werkzeuge wie Kennzahlen und deren Darstellung in Dashboards als nützlich herauskristallisiert. Heutzutage braucht es aber deutlich mehr – z.B. hält künstliche Intelligenz immer häufiger Einzug in die Fabrikhallen.

Klassische Anwendungen

Bisher gehören beispielsweise Auswertungen, Dashboards und Reports genauso wie Kennzahlen zu den gängigen Analytics-Werkzeugen. Viele dieser Anwendungen sind Bestandteil eines Manufacturing Execution Systems (MES) wie Hydra von MPDV. Beliebte Auswertungen sind beispielsweise die Ausschussstatistik, das Maschinenzeitprofil, der OEE-Report oder auch die klassische Regelkarte in der Qualitätssicherung. In allen Fällen entsteht der Mehrwert dadurch, dass Hydra Informationen darstellt, die aus erfassten Rohdaten berechnet bzw. aggregiert wurden. Im Sinne einer ‚Rückspiegelbetrachtung‘ spricht man hier auch von Descriptive Analytics.

Self Service Analytics

Oft gehen die Anforderungen von Fertigungsunternehmen über standardisierte Kennzahlen und vorgefertigte Auswertungen hinaus. Insbesondere wenn größere Datenmengen zur Analyse zur Verfügung stehen, bietet es sich an, auf Methoden des Self Service Analytics zurückzugreifen, um so eine individuelle Ursachenforschung zu betreiben. Der Klassiker hierfür ist die Pivot-Tabelle, die viele aus Excel kennen und die auch im MES Hydra zum Einsatz kommt. Ein Praxisbeispiel ist die Fehlerschwerpunktanalyse. Die flexible Anordnung von Datenfeldern in Zeilen und Spalten sowie der Einsatz von Filtern und Korrelationsfunktionen ermöglichen eine Eingrenzung von Daten auf relevante Werte. So kann jeder Anwender selbst entscheiden, wie seine Auswertung aussieht – er bedient sich im wahrsten Sinne des Wortes selbst und nutzt die angebotenen Werkzeuge, um an sein Ziel zu gelangen. Sollen Daten aus unterschiedlichen Quellen miteinander korreliert werden, lässt sich das MES-Cockpit von MPDV nutzen, welches zur Visualisierung auf Qlik-Technologie zurückreift.

Seiten: 1 2 3Auf einer Seite lesen

- Anzeige -

Das könnte Sie auch Interessieren

Bild: Sick AG
Bild: Sick AG
KI per Cloud 
für Sick-Geräte

KI per Cloud für Sick-Geräte

Bild: Sick AG DStudio ist ein Webdienst von Sick, mit dem neuronale Netze trainiert werden können, die für verschiedene Sick-Geräte ausgelegt sind. Durch die einfache Benutzeroberfläche ist die Nutzung auch ohne fundierte KI-Kenntnisse möglich. Fortschritt und Erfolg...

Bild: Edag Group
Bild: Edag Group
Edag Tech Summit 2020

Edag Tech Summit 2020

Bild: Edag Group Der in den letzten 10 Monaten entwickelte fahrbare Prototyp zeigt das Potential der CityBots anschaulich am Anwendungsfall der Abfallbeseitigung auf. Dank künstlicher Intelligenz und Machine Learning haben Edag-Experten eine Objekterkennung...