- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: min
Historische Daten zur Rüstzeitprognose nutzen

Nov 28, 2019 | Industrielle Produktion

Algorithmen für die Fabrik

Historische Daten zur
Rüstzeitprognose nutzen

Bild: ©Kadmy/stock.adobe.com

Die Planung der Fertigung kann immer nur so gut sein, wie die Vorgaben und Annahmen auf denen sie basiert. Künstliche Intelligenz macht aus starren Vorgaben dynamische Prognosen. Damit wird auch die Planung deutlich realistischer.


Bei vielen Unternehmen bilden Manufacturing-Execution-Systeme zusammen mit ERP-Anwendungen das digitale Rückgrat der Fabrik und der damit verbundenen Produktionsprozesse. Ein zentraler Aspekt in beiden Systemen ist die Planung der Fertigung. Dafür wird im ERP-System auf eine Reihe von Vorgabewerten zurückgegriffen, um eine Grundlage für die zu berücksichtigende Bearbeitungsdauer eines Vorgangs und für die Übergangszeiten zwischen zwei Vorgängen eines Auftrags zu haben. Am Beispiel dieser Vorgabewerte – speziell an der Rüstzeit – lässt sich der Nutzen von künstlicher Intelligenz (KI) im MES verdeutlichen.

Herkömmliches Vorgehen

Im einfachsten Fall wurde die Rüstzeit bisher manuell gemessen (REFA-Vorgehen). Wird bereits ein MES eingesetzt, kann die Rüstzeit natürlich auch aus den erfassten Ist-Zeiten ermittelt werden. Ausreißer sollten dabei stets eliminiert werden bzw. gewichtet einfließen. Die eigentliche Komplexität bei der Rüstzeitermittlung entsteht jedoch durch die Kombination diverser Einflussfaktoren: abhängig vom verwendeten Werkzeug kann die Rüstzeit für ein Produkt variieren, Farbwechsel vergrößern oder verkleinern die Rüstzeit, gegebenenfalls sind weitere Faktoren zu berücksichtigen. Ein MES deckt diese Variabilität oftmals mit integrierten Funktionen ab, in der die Übergänge mit zeitlichen Zu- oder Abschlägen gepflegt und dann bei der Feinplanung berücksichtigt werden können. Abhängig von der Anzahl der Einflussfaktoren resultieren daraus oftmals kaum noch zu überblickende Stammdatenuniversen. Genau an diesem Punkt könnte künstliche Intelligenz die Spielregeln verändern.

Zeitgemäßes Vorgehen mit KI

Durch KI – speziell durch Machine Learning – kann die Rüstzeit auf der Basis historischer Daten vorausgesagt werden. Grundlage hierfür bildet der Paradigmenwechsel zwischen der klassischen Programmierung und Machine Learning. War bei der klassischen Programmierung ein detailliertes Verständnis des abzubildenden Sachverhalts und seiner Einflussfaktoren notwendig, um aus Eingangsdaten mit Hilfe des erstellten Programms Ergebnisdaten zu erzeugen, entfällt das aufwendige und restriktive Verständnis des Sachverhalts und seiner Einflussfaktoren durch den Einsatz von Machine Learning. Auf der Basis historischer Daten aus dem MES (wie lange hat das Rüsten bezogen auf die Kombinationen aus Artikel, Maschine, Werkzeug, ? unter Berücksichtigung der Schicht, ? tatsächlich gedauert) wird das ‚Programm‘ erstellt, welches man bei Machine Learning auch als Modell bezeichnet. Durch die Verwendung historischer Daten bei der Modellerstellung können diese auf ihre Eigenschaft als Einflussfaktor untersucht werden. Eine Dokumentation all dieser Faktoren im MES wäre in den meisten Fällen aufgrund der Komplexität kaum sinnvoll. Für viele Unternehmen würde die Ausweisung der tatsächlichen Einflussfaktoren auf Basis der historischen Daten schon einen Mehrwert darstellen.

Paradigmenwechsel: von der klassischen Programmierung zu Machine Learning (Bild: MPDV Mikrolab GmbH)

Seiten: 1 2Auf einer Seite lesen

Autor:
Firma:

News

Weitere Beiträge

Das könnte Sie auch interessieren

ABB unterstützt betriebliche Optimierung mit Analyse- und KI-Software

Die ABB Ability Genix Industrial Analytics und AI Suite ist eine skalierbare Analyseplattform mit vorgefertigten, benutzerfreundlichen Anwendungen und Services. Damit werden Betriebs-, Engineering- und IT-Daten erfasst, kontextualisiert und in umsetzbare Informationen umgewandelt. So können industrielle Prozesse verbessert und das Management der Anlagen optimiert werden. Darüber hinaus können Geschäftsprozesse sicher und nachhaltig rationalisiert werden.

mehr lesen

KI-Vorreiter führen ihre KI-Initiativen trotz Corona unbeirrt fort

Unternehmen, die beim Thema künstliche Intelligenz (KI) führend sind, zeigen sich von der Corona-Pandemie unbeeindruckt: 78 Prozent der KI-Vorreiter unter den Unternehmen führen ihre KI-Initiativen wie vor der Pandemie fort, 21 Prozent haben deren Umsetzung sogar beschleunigt. Unter den Unternehmen, die KI noch nicht skalierbar einsetzen, fahren hingegen 43 Prozent ihrer Investitionen zurück und 16 Prozent haben ihre KI-Initiativen eingestellt. In Deutschland haben 44 Prozent der Unternehmen keine Änderungen vorgenommen, 8 Prozent die Geschwindigkeit erhöht und 19 Prozent ihre Initiativen aufgrund der unsicheren Lage eingestellt. Weiterhin verzeichnen Unternehmen mit skalierbaren KI-Anwendungen messbare Erfolge bei der Absatzsteigerung und der Reduzierung von Sicherheitsrisiken und Kundenbeschwerden. Zu diesen und weiteren Ergebnissen kommt die Studie ‚The AI Powered Enterprise: Unlocking the potential of AI at scale‘, für die 950 Unternehmen aus elf Ländern und elf Branchen befragt wurden.

mehr lesen

KI übernimmt Arbeit von Software-Ingenieuren

Für selbstadaptive Software gibt es heute unzählige Anwendungsmöglichkeiten. Doch die Entwicklung der Systeme stellt Software-Ingenieure vor neue Herausforderungen. Wissenschaftler vom Softwaretechnik-Institut Paluno an der Universität Duisburg-Essen (UDE) haben jetzt vielversprechende Ergebnisse mit neuartigen Verfahren der künstlichen Intelligenz (KI) erzielt, die den Entwicklungsprozess selbstadaptiver Systeme automatisieren.

mehr lesen

Wie wird künstliche Intelligenz zum Standardwerkzeug für den Mittelstand?

Das Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU möchte zusammen mit den produzierenden Unternehmen des Mittelstands die entscheidende Barriere für die Anwendung künstlicher Intelligenz überwinden: Die Köpfe sind überzeugt, aber die Umgestaltung der Produktionsanlagen und -prozesse in den Fabriken stockt. Deshalb arbeiten die Forscherinnen und Forscher an einem systematischen Leitfaden, mit dem KI zum Standardwerkzeug werden soll, das bessere Produkte mit geringerem Ressourceneinsatz ermöglicht. Erste Ergebnisse sind vielversprechend.

mehr lesen

Leistungsstarkes KI-System am KIT installiert

Als ein Werkzeug der Spitzenforschung ist künstliche Intelligenz (KI) heute unentbehrlich. Für einen erfolgreichen Einsatz – ob in der Energieforschung oder bei der Entwicklung neuer Materialien – wird dabei neben den Algorithmen zunehmend auch spezialisierte Hardware zu einem immer wichtigeren Faktor. Das Karlsruher Institut für Technologie (KIT) hat nun als erster Standort in Europa das neuartige KI-System NVIDIA DGX A100 in Betrieb genommen. Angeschafft wurde es aus Mitteln der Helmholtz Artificial Intelligence Cooperation Unit (HAICU).

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.