- Anzeige -
- Anzeige -

Jun 25, 2020 | Zahlenfutter

Studie von VDE und Bertelsmann Stiftung: KI-Ethik messbar machen
In einer neuen Studie zeigen die Technologieorganisation VDE und die Bertelsmann Stiftung, wie sich Ethikprinzipien für künstliche Intelligenz (KI) in die Praxis bringen lassen. Zwar gibt es eine Vielzahl an Initiativen, die ethische Richtlinien für die Gestaltung von KI veröffentlicht haben, allerdings bis dato kaum Lösungen für deren praktische Umsetzung. Genau hier setzt der VDE als Initiator und Leiter der 'AI Ethics Impact Group' gemeinsam mit der Bertelsmann Stiftung an.
WKIO_2020_Fig7.jpg -> Risk matrix with 5 classes of application areas with risk potential ranging from ‘no ethics rating required’ in class 0 to the prohibition of AI systems in class 4 ... aus der Studie
Bild:Bertelsmann Stiftung

Die Studie ‚From principles to practice – an interdisciplinary framework to operationalise AI ethics‘ zeigt, wie mit der geschickten Kombination dreier Werkzeuge – einem WKIO-Modell, einem KI-Ethik-Label und einer Risikoklassifizierung – allgemeine ethische Prinzipien messbar und konkret umsetzbar werden. Das größte Hindernis für die Entwicklung von ethischer KI sind laut VDE und Bertelsmann Stiftung die Unschärfen und die unterschiedlichen Verständnisse von Prinzipien wie ‚Transparenz‘ und ‚Gerechtigkeit‘. Dies führt dazu, dass KI-entwickelnden Unternehmen die nötige Orientierung fehlt und eine wirksame Durchsetzung von KI-Ethik bisher schwierig war.

Messbarkeit und Sichtbarkeit durch WKIO-Modell und Ethik-Label

Das sogenannte WKIO-Modell (im Englischen VCIO: Value, Criteria, Indicators, Observables) schlüsselt Werte in Kriterien, Indikatoren und letztlich messbare Observablen auf. Demonstriert wird dies in der Studie für die Werte Transparenz, Gerechtigkeit und Verantwortlichkeit. Das WKIO-Modell kann von Politikentwicklern, Regulierern und Aufsichtsbehörden genutzt werden, um Anforderungen an KI-Systeme zu konkretisieren und durchzusetzen. Das ebenfalls im Rahmen der Studie entwickelte Ethik-Label für KI-Systeme ermöglicht Unternehmen, die ethischen Eigenschaften ihrer Produkte klar und einheitlich zu kommunizieren. Das Label lehnt sich an das erfolgreiche Energieeffizienzlabel für Elektrogeräte an und schafft sowohl für Konsumenten als auch Unternehmen eine bessere Vergleichbarkeit der auf dem Markt zur Verfügung stehenden Produkte. Welche Eigenschaften sich dabei z.B. hinter ‚Transparenz: Klasse C‘ oder ‚Gerechtigkeit: Klasse B‘ verbergen, wird anhand des WKIO-Models spezifiziert.

Risiko-Matrix hilft bei Klassifizierung von KI-Anwendungsfällen

Welche Eigenschaften eines KI-Systems als ‚ethisch ausreichend‘ gelten, ist vom konkreten Anwendungsfall abhängig. Der Einsatz eines KI-Systems zur Verteilung von Gütern dürfte z.B. in der Möbellogistik ethisch weniger heikel sein als bei der Belieferung von Krankenhäusern. Die Studie stellt daher mit der ‚Risiko-Matrix# einen Ansatz zur Klassifizierung des Anwendungskontexts vor. Während die niedrigste Klasse 0 keine weiteren ethischen Überlegungen erfordert, dürfen für die Klassen 1 bis 3 nur KI-Systeme eingesetzt werden, die das obige KI-Ethik-Label tragen und innerhalb dieses Labels bestimmte Mindestanforderungen erfüllen. Die Einstufung in Klasse 0, 1, 2 oder 3 berücksichtigt einerseits die Intensität des potenziellen Schadens, z.B. das Ausmaß der Verletzung von individuellen Grundrechten, die Anzahl der betroffenen Personen oder mögliche negative Auswirkungen auf die Gesellschaft als Ganzes, und andererseits die Abhängigkeit der betroffenen Personen bzw. deren Möglichkeit, sich einer KI-Entscheidung zu entziehen, ein anderes System wählen oder eine bestehende Entscheidung hinterfragen zu können.

Die Studie „From principles to practice – an interdisciplinary framework to operationalise AI ethics“ entstand unter der Federführung von VDE und Bertelsmann Stiftung in der ‚AI Ethics Impact Group‘ und kann kostenlos hier herunter geladen werden.

Charts der Woche

Künstliche Intelligenz braucht Fachkräfte

Fast sechs Prozent der Unternehmen in Deutschland haben im Jahr 2019 künstliche Intelligenz (KI) eingesetzt. Diese Unternehmen gaben rund 4,8 Milliarden Euro im Bereich KI aus und beschäftigten 139.000 Personen ganz oder teilweise mit KI-Tätigkeiten. Jedoch fehlt es an geeignetem Personal: Fast jede zweite offene KI-Stelle konnte im vergangenen Jahr nur unzureichend oder überhaupt nicht besetzt werden. Zu diesen Ergebnissen kommt eine Studie des ZEW Mannheim im Auftrag des Bundesministeriums für Wirtschaft und Energie (BMWi).

Fraunhofer IAO untersucht Potenziale und Einsatz von KI in Unternehmen

Wie kommt künstliche Intelligenz (KI) in der Unternehmenspraxis an? Welche Potenziale versprechen sich Unternehmen davon, welche Auswirkungen erhoffen und fürchten sie und wo werden KI-Technologien schon in der Praxis eingesetzt? Diese und weitere Fragen zu den Potenzialen und Auswirkungen von KI hat das Fraunhofer IAO auf Basis einer Befragung untersucht. Die resultierende Publikation ‚Künstliche Intelligenz in der Unternehmenspraxis‘ ist ab sofort kostenlos erhältlich

Studie von VDE und Bertelsmann Stiftung: KI-Ethik messbar machen

In einer neuen Studie zeigen die Technologieorganisation VDE und die Bertelsmann Stiftung, wie sich Ethikprinzipien für künstliche Intelligenz (KI) in die Praxis bringen lassen. Zwar gibt es eine Vielzahl an Initiativen, die ethische Richtlinien für die Gestaltung von KI veröffentlicht haben, allerdings bis dato kaum Lösungen für deren praktische Umsetzung. Genau hier setzt der VDE als Initiator und Leiter der ‚AI Ethics Impact Group‘ gemeinsam mit der Bertelsmann Stiftung an.

Produkthighlights des Monats

Das könnte Sie auch interessieren

Rüstzeitoptimierung im Zeitalter von Industrie 4.0

Häufige Umrüstvorgänge machen eine Produktion ineffizient. Stillstandzeiten resultieren in geringeren Produktionszahlen, Ressourcen werden nicht optimal genutzt und die Fertigung kleiner Losgrößen erfordert eine zunehmende Flexibilisierung, die mit manueller Planung nur schwer zu erreichen ist. Mit Hilfe von künstlicher Intelligenz lassen sich jedoch die Rüstzeiten zwischen Aufträgen abgleichen und so eine bestmögliche Feinplanung unter Beachtung relevanter Produktionsparameter gewährleisten. Resultat dieser Anpassung: geringe Rüstzeiten und hohe Maschinenauslastung unter Einhaltung der Liefertermine.

mehr lesen

Mit Machine Learning präzise Vorhersagen treffen

Viele Unternehmen haben das Potenzial selbstlernender Systeme, die Machine Learning benutzen, erkannt. Dieser Teilbereich der künstlichen Intelligenz basiert auf Algorithmen, die Muster und Gesetzmäßigkeiten in großen Datenmengen erkennen. Mithilfe neuronaler Netze lassen sich aus den Datenbeständen Rückschlüsse ziehen und Prognosen treffen. In vielen Branchen bereits etabliert, findet Machine Learning als Analyse- und Steuerungsinstrument nun auch zunehmend Anwendung in der Logistik. Ein Beispiel dafür ist die Verknüpfung des Microsoft Azure Machine Learning Studios mit Bestandsmanagement- oder ERP-Systemen. Mit diesen Lösungen lassen sich unter anderem Bestände und Bestellungen optimieren sowie Lagerprozesse erheblich verbessern.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.