Statusreport ‚Maschinelles Lernen‘

Die industrielle Bildverarbeitung (BV) in Deutschland blickt auf ein jahrzehntelanges Wachstum mit zuletzt 2,8Mrd.€ Umsatz im Jahr 2018 zurück. Immer häufiger besteht in der Industrie der Bedarf, die erzeugten Bilddaten automatisiert zu bewerten, sei es zur Prozess- und Qualitätskontrolle oder in der medizinischen Diagnostik. Mit dem neuen Statusreport 'Maschinelles Lernen – Künstliche Intelligenz mit neuronalen Netzen in optischen Mess- und Prüfsystemen' will der VDI in das maschinelle Lernen für optische Mess- und Prüfsysteme einführen und die Potenziale des maschinellen Lernens vorstellen.

Statusreport ‚Maschinelles Lernen‘

Bild: MVTec Software GmbH

Die industrielle Bildverarbeitung (BV) in Deutschland blickt auf ein jahrzehntelanges Wachstum mit zuletzt 2,8Mrd.€ Umsatz im Jahr 2018 zurück. Immer häufiger besteht in der Industrie der Bedarf, die erzeugten Bilddaten automatisiert zu bewerten, sei es zur Prozess- und Qualitätskontrolle oder in der medizinischen Diagnostik. Mit dem neuen Statusreport ‚Maschinelles Lernen – Künstliche Intelligenz mit neuronalen Netzen in optischen Mess- und Prüfsystemen‘ will der VDI in das maschinelle Lernen für optische Mess- und Prüfsysteme einführen und die Potenziale des maschinellen Lernens vorstellen.


Die derzeitigen Technologietreiber für das maschinelle Lernen (ML) im Bereich der Bildverarbeitung sind vor allem die Automobiltechnik, die Kommunikations- und Unterhaltungselektronik (Smartphones), die Medizin sowie der Bereich der öffentlichen Sicherheit. Das maschinelle Lernen zeigt dabei Stärken in klassischen Bildverarbeitungsaufgaben wie Segmentierung, Objekterkennung und Klassifikation. KI-Lösungen mit neuronalen Netzten eignen sich insbesondere für Aufgaben, für die sich weniger leicht Regeln angeben lassen, wie die Erkennung von Anomalien (in Bildern oder Zeitreihen) sowie bei der Fusion oder Korrelation von verschiedenen Datenströmen.

Zentrales Forschungsfeld in der BV ist die Erklärbarkeit der Ergebnisse des ML. Häufig kann die Frage ‚Warum hat das System so entschieden?‘ noch nicht beantwortet werden, da viele Verfahren des ML keine Kennzahlen für die Zuverlässigkeit ihrer Ergebnisse liefern. Allerdings ist genau das die notwendige Voraussetzung, um die Akzeptanz bei Anwendern sicherzustellen – z.B. bei der Abnahme von Projektergebnissen, bei Zertifizierungen von Verfahren oder bei der Erstellung von Diagnosen in der Medizin. Es braucht geeignete Kennzahlen, die die Qualität des Ergebnisses einschätzen. Sie sind insbesondere dann wichtig, wenn aus einem Ergebnis sicherheitsrelevante Entscheidungen abgeleitet werden sollen. Die Publikation zeigt den momentanen Stand und versucht, künftige Entwicklungen abzuschätzen.

Universitäten, Forschungseinrichtungen und Industrieunternehmen bringen die Nutzung des ML und der KI mit viel Engagement voran. Insbesondere hinsichtlich der Datennutzung müssen allerdings geeignete Rahmenbedingungen geschaffen werden: Große Datenmengen müssen zuverlässig gesichert, zwischen Projektpartnern ausgetauscht und vor unberechtigtem Zugriff gesichert werden können. Die Verfügbarkeit von industriellen Daten und die Freiheit zur Nutzung der Daten werden in naher Zukunft eine wesentliche Grundlage der wirtschaftlichen Souveränität eines Wirtschaftsraums bilden. Notwendig sind daher klare Regelungen, welche Eigentums- oder Nutzungsrechte an solchen Daten bestehen, wo die Grenzen individueller Rechte an Daten liegen und welche Rechte an den Ergebnissen von Lernverfahren für KI und ML bestehen. Diese Regelungen müssen in einem europäischen Rahmen vereinbart sein.

Der vollständige Statusreport ‚Maschinelles Lernen – Künstliche Intelligenz mit neuronalen Netzen in optischen Mess- und Prüfsystemen‘ steht kostenfrei unter www.vdi.de/publikationen.

Autor: VDI Verein Deutscher Ingenieure e.V.
www.vdi.de

News

Fachbeiträge

AI at the Edge

AI at the EdgeProgrammierung von AI-Lösungen unter...

Weitere Fachbeiträge

Was ist künstliche Intelligenz?

Was ist künstliche Intelligenz? Anspruchsvolle Probleme einfach per KI lösen Kaum eine Digitalstrategie kommt heutzutage ohne künstliche Intelligenz aus. Doch was zeichnet eine KI aus und wo kommt sie zum Einsatz? Künstliche Intelligenz ist ein Zweig der Informatik,...

Machine Learning kann Liquidität steigern

Volle Auftragsbücher und trotzdem insolvent – dieses Schicksal kann selbst stabile Unternehmen ereilen, wenn ihre Großkunden nicht pünktlich zahlen. Dabei lässt sich die Liquidität sichern, wenn rechtzeitig die richtigen Infos bereitstehen. Machine Learning macht genau das jetzt automatisiert möglich.

Der digitale Zwilling im Fahrzeugbau

Wie mit Daten die Entwicklung beschleunigt werden kann Der digitale Zwilling im Fahrzeugbau Fahrzeugbauer erhalten Erkenntnisse über die Qualität und Fahrverhalten neuer Automodelle unter Realbedingungen. Die dabei gesammelten Daten bilden jedoch immer häufiger die...

RPA trifft künstliche Intelligenz

Intelligent Automation steht für eine neue Stufe in der Zusammenarbeit von Mensch und Maschine. Smarte Automatisierung verändert mithilfe von KI und Analytics die Geschäftsprozesse in Unternehmen grundlegend. Für die aktuelle Studie hat Deloitte weltweit Unternehmen befragt: Wie skalieren sie ihre Automatisierungsstrategie erfolgreich? Und sind sie bereit, menschliche und maschinelle Intelligenz zu kombinieren, um das volle Potential der neuen Technologie zu schöpfen?

Software-Roboter im Internet der Dinge

Künstliche Intelligenz und das Internet of Things sind für sich alleine schon faszinierende Technologien. Werden beide kombiniert, eröffnet dies neue Anwendungszenarien für die Optimierung von Geschäftsprozessen. Dabei sammelt das IoT die Daten, während die KI sie verarbeitet, um ihnen Bedeutung zu verleihen.

Anomaly Detection

Anomaly Detection Anomalien einfach und zielsicher mit wenigen Bildern erkennen Deep-Learning-Verfahren werden sowohl für die Identifikation von Objekten als auch für die Detektion von Fehlern eingesetzt. Mit der Anomaly Detection in Halcon 19.11 lassen sich nun auch...

Mehr Speicher für mehr Daten

Autonomes Fahren Mehr Speicher für mehr Daten Künstliche Intelligenz spielt bei der Zukunft der Mobilität eine große Rolle, da Fahrzeuge immer abhängiger von immer mehr Daten werden. Dies erfordert neue Speicherlösungen, die es ermöglichen, Daten nahtlos zwischen...

Maschinen und Geräte mit KI noch intelligenter machen

Der Elektronikhersteller E.D.&A. setzt neuronale Netzwerke ein, um seine elektronischen Steuerungen intelligenter zu gestalten. Binäre neuronale Netzwerke sind für die Erkennung von Mustern sehr gut geeignet und können daher eingesetzt werden, um Probleme anders anzugehen.

News

→ MEHR