Gesehen, gespeichert, gelernt!

Unbekannte Teile sicher greifen - Wissenschaftler des KIT zeigen, wie Roboter Bin-Picking-Aufgaben selbst trainieren können. Dabei helfen eine Ensenso 3D-Kamera von IDS und ein neuronales Netz. Details erfahren Sie in der Case Study.

Bin Picking:

Gesehen, gespeichert, gelernt!

Bild: IDS Imaging Development Systems GmbH

Unbekannte Teile sicher greifen – Wissenschaftler des KIT zeigen, wie Roboter Bin-Picking-Aufgaben selbst trainieren können. Dabei helfen eine Ensenso 3D-Kamera von IDS und ein neuronales Netz. Details erfahren Sie in der Case Study.

Am Institut für Intelligente Prozessautomation und Robotik des Karlsruher Instituts für Technologie (KIT) befasst sich die Robot Learning Group (ROLE) mit verschiedenen Schwerpunkten in den Bereichen des maschinellen Lernens. Dabei erforschen die Wissenschaftler, wie Roboter durch selbstständiges Ausprobieren lernen Aufgaben zu lösen. Diese Methoden werden insbesondere für das Lernen von Objektmanipulation eingesetzt, beispielsweise für das Greifen von Objekten in einem typischen Bin Picking Szenario. Eine Ensenso N10 3D-Kamera von IDS direkt am „Kopf“ des Roboters liefert die benötigten Bilddaten.

Das Greifen von chaotisch liegenden Gegenständen ist gerade in der industriellen Automation eine zentrale Aufgabe. Aktuelle Bin Picking Lösungen sind jedoch häufig unflexibel und stark an das zu greifende Werkstück angepasst. Die Forschungsprojekte der Robot Learning Group versprechen Abhilfe, z.B. mit Robotern, die selbständig lernen, zuvor unbekannte Objekte aus einem Behälter zu greifen. Um eine solche Aufgabe zu lernen, beginnt der Roboter zunächst mit zufälligen Greif-Versuchen, wie es auch ein Mensch machen würde. Ein neuronales Netz setzt die dabei aufgenommenen 3D-Bilder mit den erfolgreichen bzw. missglückten Greifversuchen in Zusammenhang. Dafür wird zu jedem Bild das Greifergebnis gespeichert, das über einen Kraftsensor im Greifer ermittelt wurde. Die künstliche Intelligenz (KI) erkennt anhand der gespeicherten Daten sinnvolle Greifpunkte für die Objekte und „trainiert“ sich damit selbst. Wie bei modernen Methoden des Reinforcement Learning üblich, sind dazu große Datenmengen und viele Greifversuche unerlässlich. Die Forscher des KITs konnten die Anzahl letzterer jedoch deutlich reduzieren und damit auch die zum Lernen benötigte Zeit verkürzen.

Die visuelle Grundlage für den Griff des Roboters liefert eine Ensenso 3D-Kamera. Sie blickt von oben auf den Behälter, zufällig gefüllt mit Objekten einer oder verschiedener Art. Das Bildverarbeitungssystem projiziert eine kontrastreiche Textur auf den Kisteninhalt und erzeugt eine 3D-Punktewolke der von oben sichtbaren Oberflächen, als Basis für die Berechnung des Tiefenbildes in Graustufen. Das Tiefenbild wird anschließend auf eine Auflösung von nur 12.000 Pixel skaliert und als Eingabe für die KI-Algorithmen verwendet. Das neuronale Netz kümmert sich daraufhin um die Bildanalyse und die folgerichtigen Schritte für den nächsten Griff in die Kiste. Die ausführliche Case Study lesen Sie auf der IDS-Website.

Autor: IDS Imaging Development Systems GmbH
https://de.ids-imaging.com/casestudies-detail/de_seen-stored-learned.html?utm_source=Robotik_Produktion_Newsletter&utm_medium=SponsoredPost&utm_campaign=EnsensoN_KIT

News

Fachbeiträge

AI at the Edge

AI at the EdgeProgrammierung von AI-Lösungen unter...

Weitere Fachbeiträge

Was ist künstliche Intelligenz?

Was ist künstliche Intelligenz? Anspruchsvolle Probleme einfach per KI lösen Kaum eine Digitalstrategie kommt heutzutage ohne künstliche Intelligenz aus. Doch was zeichnet eine KI aus und wo kommt sie zum Einsatz? Künstliche Intelligenz ist ein Zweig der Informatik,...

Machine Learning kann Liquidität steigern

Volle Auftragsbücher und trotzdem insolvent – dieses Schicksal kann selbst stabile Unternehmen ereilen, wenn ihre Großkunden nicht pünktlich zahlen. Dabei lässt sich die Liquidität sichern, wenn rechtzeitig die richtigen Infos bereitstehen. Machine Learning macht genau das jetzt automatisiert möglich.

Der digitale Zwilling im Fahrzeugbau

Wie mit Daten die Entwicklung beschleunigt werden kann Der digitale Zwilling im Fahrzeugbau Fahrzeugbauer erhalten Erkenntnisse über die Qualität und Fahrverhalten neuer Automodelle unter Realbedingungen. Die dabei gesammelten Daten bilden jedoch immer häufiger die...

RPA trifft künstliche Intelligenz

Intelligent Automation steht für eine neue Stufe in der Zusammenarbeit von Mensch und Maschine. Smarte Automatisierung verändert mithilfe von KI und Analytics die Geschäftsprozesse in Unternehmen grundlegend. Für die aktuelle Studie hat Deloitte weltweit Unternehmen befragt: Wie skalieren sie ihre Automatisierungsstrategie erfolgreich? Und sind sie bereit, menschliche und maschinelle Intelligenz zu kombinieren, um das volle Potential der neuen Technologie zu schöpfen?

Software-Roboter im Internet der Dinge

Künstliche Intelligenz und das Internet of Things sind für sich alleine schon faszinierende Technologien. Werden beide kombiniert, eröffnet dies neue Anwendungszenarien für die Optimierung von Geschäftsprozessen. Dabei sammelt das IoT die Daten, während die KI sie verarbeitet, um ihnen Bedeutung zu verleihen.

Mehr Speicher für mehr Daten

Autonomes Fahren Mehr Speicher für mehr Daten Künstliche Intelligenz spielt bei der Zukunft der Mobilität eine große Rolle, da Fahrzeuge immer abhängiger von immer mehr Daten werden. Dies erfordert neue Speicherlösungen, die es ermöglichen, Daten nahtlos zwischen...

Anomaly Detection

Anomaly Detection Anomalien einfach und zielsicher mit wenigen Bildern erkennen Deep-Learning-Verfahren werden sowohl für die Identifikation von Objekten als auch für die Detektion von Fehlern eingesetzt. Mit der Anomaly Detection in Halcon 19.11 lassen sich nun auch...

Maschinen und Geräte mit KI noch intelligenter machen

Der Elektronikhersteller E.D.&A. setzt neuronale Netzwerke ein, um seine elektronischen Steuerungen intelligenter zu gestalten. Binäre neuronale Netzwerke sind für die Erkennung von Mustern sehr gut geeignet und können daher eingesetzt werden, um Probleme anders anzugehen.

News

→ MEHR