Software-Roboter im Internet der Dinge

Künstliche Intelligenz und das Internet of Things sind für sich alleine schon faszinierende Technologien. Werden beide kombiniert, eröffnet dies neue Anwendungszenarien für die Optimierung von Geschäftsprozessen. Dabei sammelt das IoT die Daten, während die KI sie verarbeitet, um ihnen Bedeutung zu verleihen.

Software-Roboter im Internet der Dinge

Bild: ©Alexander Limbach/stock.adobe.com

Künstliche Intelligenz und das Internet of Things sind für sich alleine schon faszinierende Technologien. Werden beide kombiniert, eröffnet dies neue Anwendungszenarien für die Optimierung von Geschäftsprozessen. Dabei sammelt das IoT die Daten, während die KI sie verarbeitet, um ihnen Bedeutung zu verleihen.


Beim IoT mag man an ein System von unabhängigen, miteinander verbundenen Rechnern, mechanischen und digitalen Maschinen oder Objekten denken, die mit eindeutigen Kennungen versehen wurden. Sie tauschen Daten über ein Netzwerk aus, ohne dass eine Interaktion von Mensch zu Mensch oder Mensch zu Computer erforderlich ist. Das IoT kann die physische Welt der Dinge und Maschinen digitalisieren, beispielsweise durch die Installation von vernetzten Sensoren, die Daten sammeln und weiterleiten. So helfen IoT-Anwendungen dabei, Prozesse zu verbessern, Ressourcen zu verteilen und Betriebsstörungen mithilfe einer vorausschauenden Instandhaltung zu antizipieren.

Daten sammeln reicht nicht

Die Hauptschwierigkeit liegt heute nicht mehr darin, Objekte miteinander zu verbinden. Die Herausforderung besteht eher darin, wie man die von den Objekten täglich erzeugten Daten sammelt, analysiert und gewinnbringend nutzt. Allein die Erhebung dieser Daten hilft keinem. Es sei denn, es gibt ein System, das die Daten interpretieren und verstehen kann. An dieser Stelle kann künstliche Intelligenz zum Einsatz kommen. Das IoT wird sozusagen intelligent.

Echtzeitanalysen großer unstrukturierter Datenmengen

KI bietet nicht nur die Möglichkeit, alle Daten, die von vernetzten Objekten erzeugt werden, zu verarbeiten, sondern auch Erkenntnisse in wesentlich kürzerer Zeit daraus abzuleiten, als es Menschen können. KI offeriert heute schon eine breite Palette von Technologien, um strukturierte und unstrukturierte Daten zu verarbeiten. Cognitive Process Automation (CPA) bringt bespielsweise durch Echtzeitanalysen schneller auf den Tisch, welche Faktoren großen Einfluss auf die Entwicklung von Unternehmen haben können. CPA nutzt Technologien wie die Verarbeitung natürlicher Sprache (NLP), Textanalyse, Data Mining, semantische Technologie und maschinelles Lernen, um auch große Mengen unstrukturierter Daten auswerten und eine fundierte Geschäftsentscheidung liefern zu können. CPA ist als nächste Stufe des Robotic Process Automation (RPA) zu verstehen, da sie sich einer KI bedient, um auch unstrukturierte Informationen zu analysieren und zu verarbeiten.

Seiten: 1 2Auf einer Seite lesen

Weissenberg Business Consulting GmbH
www.weissenberg-solutions.de

News

Fachbeiträge

Weitere Fachbeiträge

Die Demokratisierung von maschinellem Lernen in der Industrie

Seit mehreren Jahren dringt die Digitalisierung immer weiter in die industrielle Produktion vor. Die Verheißungen, durch Datenerhebung und -analyse die eigene Effizienz und Produktivität zu steigern sowie neue datenbasierte Geschäftsmodelle zu entwickeln, klingen vielversprechend in einem Zeitalter, in dem die meisten Unternehmen auf der Suche nach neuen Wachstumsmöglichkeiten sind. Ein Bereich, dem ein enormes Potenzial zugeschrieben wird, ist künstliche Intelligenz bzw. Machine Learning. Ein Kommentar von Tobias Gaukstern, Leiter der Business Unit Industrial Analytics bei Weidmüller.

Entwicklungsprognose

Entwicklungsprognose Trends für die Fabrik der Zukunft Wohin entwickeln sich die Fabriken in den nächsten Jahren? Philipp Wallner von MathWorks wagt die Prognose, das fünf Faktoren darunter sein werden, die individuelles Fertigen und Ressourceneffizienz in Einklang...

Künstliche Intelligenz für Gebäude

Künstliche Intelligenz (KI) gilt als Schlüsseltechnologie der kommenden Jahre für die Bereiche Autonomes Fahren, Industrie 4.0 und Medizintechnik. Auch im Gebäudemanagement setzt man längst auf automatisierte Lösungen. Bei neuen Bauvorhaben wünschen sich Betreiber immer häufiger smarte Technologien. Gebäude werden mit einer Vielzahl an Sensoren ausgestattet: von IP-Kameras über Feuer- und Rauchmelder, Thermostatregler und weiteren Überwachungssystemen für Heiz-, Lüftungs- und Klimatechnik bis hin zu biometrischen Lesegeräten für die Zutrittskontrolle. All diese IP-Geräte werden mit jeder Entwicklungsstufe immer intelligenter. Werden sie alle mittels Software vernetzt, entsteht ein intelligentes Gebäude.

Cyber-Bedrohungen 2020

Fortgeschrittene KI und intelligente Bedrohungs-Desinformation Cyber-Bedrohungen 2020 Der Cybersecurity-Anbieter Fortinet hat die Prognosen von FortiGuard Labs zur Bedrohungslandschaft für 2020 veröffentlicht. Die Analysten von Fortinet zeigen darin Methoden, die...

Lernende Objekterkennung in Echtzeit

Heutige Inspektionsssteme sind auf wenige, sehr akkurat justierte Objekttypen herstellerseitig justiert. Kommen neue Produkttypen hinzu, müssen die Systeme zeitaufwendig neu justiert werden. Die KI-Inspektionsplatform von Gestalt Robotics beseitigt diese Hürden.

Maschinenlernen eingebettet

Bisher wird der gewünschte Zusammenhang zwischen den jeweiligen Eingangs- und Ausgangsdaten einer Automatisierungsbaugruppe mittels wissensbasierter Regeln in einer Hoch- oder SPS-Programmiersprache kodiert und auf einem eingebetteten System ausgeführt. In Zukunft lassen sich Embedded Systeme in der Automatisierung auch per Supervised Machine Learning für eine bestimmte Aufgabenstellung trainieren.

Zwischen Regelwerk und Selbstlernen

Nach einer Studie von Gartner soll bis 2022 der Geschäftswert von KI auf 2,85 Billionen Euro steigen. Der Löwenanteil davon wird voraussichtlich auf den Bereich der Kundenerfahrung entfallen, für das schon ausgereifte Tools am Markt existieren. Dieser Überblick zeigt, wie es heute um KI im Field Service Management steht und wohin die Reise geht.

Psychometrie im Vertrieb

Psychometrie im Vertrieb Souffleuse für das Verkaufsgespräch Ein neuer Trend in der Marketing-Kommunikation ist die KI-gestützte Stimmungsanalyse der Gesprächspartner: Sentimentanalysen in Verbindung mit Spracherkennung wie bei Amazons Alexa, IBM Watson, oder Google...

Direkte Roboteransteuerung

Direkte Roboteransteuerung Mit dem Ziel der direkten Roboteransprache über die neue Steuerung SmoothAi haben Mazak und namhafte Roboterhersteller ihre Zusammenarbeit intensiviert. Den Kern der SmoothAi machen drei wesentliche Eigenschaften aus: das so genannte Machine...

News

→ MEHR