Mehr Speicher für mehr Daten

Autonomes Fahren Mehr Speicher für mehr Daten Künstliche Intelligenz spielt bei der Zukunft der Mobilität eine große Rolle, da Fahrzeuge immer abhängiger von immer mehr Daten werden. Dies erfordert neue Speicherlösungen, die es ermöglichen, Daten nahtlos zwischen unterschiedlichen Speicherarten zu verschieben. Der technologische Fortschritt in der Automobilindustrie lässt die Vision vom vernetzten und selbstfahrenden Auto […]

Autonomes Fahren

Mehr Speicher für mehr Daten

Bild: ©carloscastilla/istockphoto.com

Künstliche Intelligenz spielt bei der Zukunft der Mobilität eine große Rolle, da Fahrzeuge immer abhängiger von immer mehr Daten werden. Dies erfordert neue Speicherlösungen, die es ermöglichen, Daten nahtlos zwischen unterschiedlichen Speicherarten zu verschieben.


Der technologische Fortschritt in der Automobilindustrie lässt die Vision vom vernetzten und selbstfahrenden Auto greifbar erscheinen. Zwar wird es noch einige Jahre dauern, bis vollautonome Autos in Masse vom Band laufen, doch bereits jetzt steigt die Anzahl teilautonomer Fahrzeuge auf dem Markt. Sie sind mit On-Board-Technologien ausgestattet, wie etwa fahrerunterstützten Systemen (ADAS), Infotainment-Systemen (IS) oder intelligenten Sensoren, die dem vernetzten Fahrzeug seine mitdenkenden Fähigkeiten und Funktionen verleihen. Die Grundlage dafür bilden Daten, wodurch die Datenmenge immer weiter wächst und ein komplexes Netz aus Plattformen und Algorithmen entsteht. Automobilhersteller müssen aber auch die Speicherung der Datenmengen schultern, die im Zuge der Entwicklung von KI-Technologien anfallen. Hunderte von Petabytes werden bei jedem Entwicklungstest erzeugt und ein großer Teil dieser Daten muss über lange Zeiträume aufbewahrt werden.

Große Datenmengen

Noch sind die Technologien nicht vollständig autonom und funktionieren nur unter bestimmten Rahmenbedingungen. Das kann im Alltag zu Problemen führen: Zum Beispiel wenn die Verkehrsdichte steigt oder Szenarien eintreten, die eine massive Datenübertragung zwischen dem fahrzeugseitigen System und dem zentralen Computersystem erfordern. Aktuell kann die Lösung solcher Probleme zu einer Überlastung mit Daten im stark beanspruchten Netzwerk und zu extremer Rechenkomplexität im Bordsystem führen. Das Marktforschungsunternehmen Gartner prognostiziert, dass das durchschnittliche vernetzte Fahrzeug bis 2020 jährlich über 280 Petabyte an Daten produzieren wird – pro Tag müssten also mindestens 4 Terabyte verarbeitet werden. Sie stammen von der On-Board-Hardware, zu der beispielsweise Kameras gehören, die 20 bis 60MB Datenvolumen pro Sekunde erzeugen oder LIDAR-Systeme, Light Detection and Ranging, für die radarbasierte Messung von Abständen und Geschwindigkeiten mit zehn bis 20 MB pro Sekunde. Sonarradare und GPS bringen es jeweils auf zehn bis 100kB pro Sekunde. Selbstfahrende Fahrzeuge werden durch Data-Intelligence-Lösungen gesteuert. Entscheidend ist dabei, die richtigen Daten zu speichern und in intelligente Systeme, Analyse-Lösungen, Entwicklungsabläufe und andere Anwendungen zu übernehmen.

Unterschiedliche Fahrzeugarten

In den nächsten Jahren werden unterschiedliche Arten von vernetzten Fahrzeugen mit individuellen Anforderungen auf den Markt kommen: Während etwa unternehmenseigene Flottenfahrzeuge über eine eigene Speicherarchitektur für die Verwaltung ihrer Daten verfügen, konzentrieren sich die Hersteller bei Mittelklassefahrzeugen für Verbraucher eher auf Infotainment-Systeme, die eine ganz andere Architektur erfordern. Eine entsprechende Speicherlösung muss in diesem Zusammenhang einen reibungslosen Übergang der Daten aus allen Lebensphasen von der ersten Erfassung im Fahrzeug bis hin zur langfristigen Speicherung ermöglichen. Diese Infrastruktur muss einen aktiven Zugriff und die Suche in allen Daten erlauben, große Langlebigkeit aufweisen und mit Werkzeugen ausgestattet sein, die Compliance-Vorgaben wie beispielsweise die Übereinstimmung mit den Datenschutzgesetzen gewährleisten. Neben einem leistungsstarken Front-End auf Basis von SSD-Speichern (Solid State Drive) oder Festplatten ist ein kostengünstiger und skalierbarer Speicher für große Datenmengen – vorzugsweise Tape oder objektbasierter Speicher – ebenso wichtig. Eine erfolgreichen Storage-Architektur zeichnet sich letztlich dadurch aus, dass den Datennutzern auf einfachem Wege die benötigten Speicher- und Verarbeitungsressourcen für ihre spezifischen Arbeitsabläufe in jeder Phase des Datenzyklus zur Verfügung stehen. Eine Kombination aus leistungsstarker Festplatte und Tape-Archivierung mit einem gemeinsamen Verwaltungspunkt für viel Speicherplatz kann in dieser Situation die Lösung sein.

Seiten: 1 2Auf einer Seite lesen

Quantum Corporation
www.quantum.com

News

Fachbeiträge

Weitere Fachbeiträge

Künstliche Intelligenz für Gebäude

Künstliche Intelligenz (KI) gilt als Schlüsseltechnologie der kommenden Jahre für die Bereiche Autonomes Fahren, Industrie 4.0 und Medizintechnik. Auch im Gebäudemanagement setzt man längst auf automatisierte Lösungen. Bei neuen Bauvorhaben wünschen sich Betreiber immer häufiger smarte Technologien. Gebäude werden mit einer Vielzahl an Sensoren ausgestattet: von IP-Kameras über Feuer- und Rauchmelder, Thermostatregler und weiteren Überwachungssystemen für Heiz-, Lüftungs- und Klimatechnik bis hin zu biometrischen Lesegeräten für die Zutrittskontrolle. All diese IP-Geräte werden mit jeder Entwicklungsstufe immer intelligenter. Werden sie alle mittels Software vernetzt, entsteht ein intelligentes Gebäude.

Cyber-Bedrohungen 2020

Fortgeschrittene KI und intelligente Bedrohungs-Desinformation Cyber-Bedrohungen 2020 Der Cybersecurity-Anbieter Fortinet hat die Prognosen von FortiGuard Labs zur Bedrohungslandschaft für 2020 veröffentlicht. Die Analysten von Fortinet zeigen darin Methoden, die...

Lernende Objekterkennung in Echtzeit

Heutige Inspektionsssteme sind auf wenige, sehr akkurat justierte Objekttypen herstellerseitig justiert. Kommen neue Produkttypen hinzu, müssen die Systeme zeitaufwendig neu justiert werden. Die KI-Inspektionsplatform von Gestalt Robotics beseitigt diese Hürden.

Maschinenlernen eingebettet

Bisher wird der gewünschte Zusammenhang zwischen den jeweiligen Eingangs- und Ausgangsdaten einer Automatisierungsbaugruppe mittels wissensbasierter Regeln in einer Hoch- oder SPS-Programmiersprache kodiert und auf einem eingebetteten System ausgeführt. In Zukunft lassen sich Embedded Systeme in der Automatisierung auch per Supervised Machine Learning für eine bestimmte Aufgabenstellung trainieren.

Zwischen Regelwerk und Selbstlernen

Nach einer Studie von Gartner soll bis 2022 der Geschäftswert von KI auf 2,85 Billionen Euro steigen. Der Löwenanteil davon wird voraussichtlich auf den Bereich der Kundenerfahrung entfallen, für das schon ausgereifte Tools am Markt existieren. Dieser Überblick zeigt, wie es heute um KI im Field Service Management steht und wohin die Reise geht.

Psychometrie im Vertrieb

Psychometrie im Vertrieb Souffleuse für das Verkaufsgespräch Ein neuer Trend in der Marketing-Kommunikation ist die KI-gestützte Stimmungsanalyse der Gesprächspartner: Sentimentanalysen in Verbindung mit Spracherkennung wie bei Amazons Alexa, IBM Watson, oder Google...

Direkte Roboteransteuerung

Direkte Roboteransteuerung Mit dem Ziel der direkten Roboteransprache über die neue Steuerung SmoothAi haben Mazak und namhafte Roboterhersteller ihre Zusammenarbeit intensiviert. Den Kern der SmoothAi machen drei wesentliche Eigenschaften aus: das so genannte Machine...

Leitfaden für Unternehmen

Leitfaden für Unternehmen Zukunftsfähig mit künstlicher Intelligenz Mit ihrem aktuellen Bericht wollen die Experten der Plattform 'Lernende Systeme' Unternehmen einen Leitfaden an die Hand geben und zeigen, wie sie KI systematisch nutzen können - veranschaulicht von...

News

→ MEHR