Mehr Speicher für mehr Daten

Autonomes Fahren Mehr Speicher für mehr Daten Künstliche Intelligenz spielt bei der Zukunft der Mobilität eine große Rolle, da Fahrzeuge immer abhängiger von immer mehr Daten werden. Dies erfordert neue Speicherlösungen, die es ermöglichen, Daten nahtlos zwischen unterschiedlichen Speicherarten zu verschieben. Der technologische Fortschritt in der Automobilindustrie lässt die Vision vom vernetzten und selbstfahrenden Auto […]

Autonomes Fahren

Mehr Speicher für mehr Daten

Bild: ©carloscastilla/istockphoto.com

Künstliche Intelligenz spielt bei der Zukunft der Mobilität eine große Rolle, da Fahrzeuge immer abhängiger von immer mehr Daten werden. Dies erfordert neue Speicherlösungen, die es ermöglichen, Daten nahtlos zwischen unterschiedlichen Speicherarten zu verschieben.


Der technologische Fortschritt in der Automobilindustrie lässt die Vision vom vernetzten und selbstfahrenden Auto greifbar erscheinen. Zwar wird es noch einige Jahre dauern, bis vollautonome Autos in Masse vom Band laufen, doch bereits jetzt steigt die Anzahl teilautonomer Fahrzeuge auf dem Markt. Sie sind mit On-Board-Technologien ausgestattet, wie etwa fahrerunterstützten Systemen (ADAS), Infotainment-Systemen (IS) oder intelligenten Sensoren, die dem vernetzten Fahrzeug seine mitdenkenden Fähigkeiten und Funktionen verleihen. Die Grundlage dafür bilden Daten, wodurch die Datenmenge immer weiter wächst und ein komplexes Netz aus Plattformen und Algorithmen entsteht. Automobilhersteller müssen aber auch die Speicherung der Datenmengen schultern, die im Zuge der Entwicklung von KI-Technologien anfallen. Hunderte von Petabytes werden bei jedem Entwicklungstest erzeugt und ein großer Teil dieser Daten muss über lange Zeiträume aufbewahrt werden.

Große Datenmengen

Noch sind die Technologien nicht vollständig autonom und funktionieren nur unter bestimmten Rahmenbedingungen. Das kann im Alltag zu Problemen führen: Zum Beispiel wenn die Verkehrsdichte steigt oder Szenarien eintreten, die eine massive Datenübertragung zwischen dem fahrzeugseitigen System und dem zentralen Computersystem erfordern. Aktuell kann die Lösung solcher Probleme zu einer Überlastung mit Daten im stark beanspruchten Netzwerk und zu extremer Rechenkomplexität im Bordsystem führen. Das Marktforschungsunternehmen Gartner prognostiziert, dass das durchschnittliche vernetzte Fahrzeug bis 2020 jährlich über 280 Petabyte an Daten produzieren wird – pro Tag müssten also mindestens 4 Terabyte verarbeitet werden. Sie stammen von der On-Board-Hardware, zu der beispielsweise Kameras gehören, die 20 bis 60MB Datenvolumen pro Sekunde erzeugen oder LIDAR-Systeme, Light Detection and Ranging, für die radarbasierte Messung von Abständen und Geschwindigkeiten mit zehn bis 20 MB pro Sekunde. Sonarradare und GPS bringen es jeweils auf zehn bis 100kB pro Sekunde. Selbstfahrende Fahrzeuge werden durch Data-Intelligence-Lösungen gesteuert. Entscheidend ist dabei, die richtigen Daten zu speichern und in intelligente Systeme, Analyse-Lösungen, Entwicklungsabläufe und andere Anwendungen zu übernehmen.

Unterschiedliche Fahrzeugarten

In den nächsten Jahren werden unterschiedliche Arten von vernetzten Fahrzeugen mit individuellen Anforderungen auf den Markt kommen: Während etwa unternehmenseigene Flottenfahrzeuge über eine eigene Speicherarchitektur für die Verwaltung ihrer Daten verfügen, konzentrieren sich die Hersteller bei Mittelklassefahrzeugen für Verbraucher eher auf Infotainment-Systeme, die eine ganz andere Architektur erfordern. Eine entsprechende Speicherlösung muss in diesem Zusammenhang einen reibungslosen Übergang der Daten aus allen Lebensphasen von der ersten Erfassung im Fahrzeug bis hin zur langfristigen Speicherung ermöglichen. Diese Infrastruktur muss einen aktiven Zugriff und die Suche in allen Daten erlauben, große Langlebigkeit aufweisen und mit Werkzeugen ausgestattet sein, die Compliance-Vorgaben wie beispielsweise die Übereinstimmung mit den Datenschutzgesetzen gewährleisten. Neben einem leistungsstarken Front-End auf Basis von SSD-Speichern (Solid State Drive) oder Festplatten ist ein kostengünstiger und skalierbarer Speicher für große Datenmengen – vorzugsweise Tape oder objektbasierter Speicher – ebenso wichtig. Eine erfolgreichen Storage-Architektur zeichnet sich letztlich dadurch aus, dass den Datennutzern auf einfachem Wege die benötigten Speicher- und Verarbeitungsressourcen für ihre spezifischen Arbeitsabläufe in jeder Phase des Datenzyklus zur Verfügung stehen. Eine Kombination aus leistungsstarker Festplatte und Tape-Archivierung mit einem gemeinsamen Verwaltungspunkt für viel Speicherplatz kann in dieser Situation die Lösung sein.

Seiten: 1 2Auf einer Seite lesen

Autor: Quantum Corporation
www.quantum.com

News

Fachbeiträge

AI at the Edge

AI at the EdgeProgrammierung von AI-Lösungen unter...

Weitere Fachbeiträge

Was ist künstliche Intelligenz?

Was ist künstliche Intelligenz? Anspruchsvolle Probleme einfach per KI lösen Kaum eine Digitalstrategie kommt heutzutage ohne künstliche Intelligenz aus. Doch was zeichnet eine KI aus und wo kommt sie zum Einsatz? Künstliche Intelligenz ist ein Zweig der Informatik,...

Machine Learning kann Liquidität steigern

Volle Auftragsbücher und trotzdem insolvent – dieses Schicksal kann selbst stabile Unternehmen ereilen, wenn ihre Großkunden nicht pünktlich zahlen. Dabei lässt sich die Liquidität sichern, wenn rechtzeitig die richtigen Infos bereitstehen. Machine Learning macht genau das jetzt automatisiert möglich.

Der digitale Zwilling im Fahrzeugbau

Wie mit Daten die Entwicklung beschleunigt werden kann Der digitale Zwilling im Fahrzeugbau Fahrzeugbauer erhalten Erkenntnisse über die Qualität und Fahrverhalten neuer Automodelle unter Realbedingungen. Die dabei gesammelten Daten bilden jedoch immer häufiger die...

RPA trifft künstliche Intelligenz

Intelligent Automation steht für eine neue Stufe in der Zusammenarbeit von Mensch und Maschine. Smarte Automatisierung verändert mithilfe von KI und Analytics die Geschäftsprozesse in Unternehmen grundlegend. Für die aktuelle Studie hat Deloitte weltweit Unternehmen befragt: Wie skalieren sie ihre Automatisierungsstrategie erfolgreich? Und sind sie bereit, menschliche und maschinelle Intelligenz zu kombinieren, um das volle Potential der neuen Technologie zu schöpfen?

Software-Roboter im Internet der Dinge

Künstliche Intelligenz und das Internet of Things sind für sich alleine schon faszinierende Technologien. Werden beide kombiniert, eröffnet dies neue Anwendungszenarien für die Optimierung von Geschäftsprozessen. Dabei sammelt das IoT die Daten, während die KI sie verarbeitet, um ihnen Bedeutung zu verleihen.

Anomaly Detection

Anomaly Detection Anomalien einfach und zielsicher mit wenigen Bildern erkennen Deep-Learning-Verfahren werden sowohl für die Identifikation von Objekten als auch für die Detektion von Fehlern eingesetzt. Mit der Anomaly Detection in Halcon 19.11 lassen sich nun auch...

Maschinen und Geräte mit KI noch intelligenter machen

Der Elektronikhersteller E.D.&A. setzt neuronale Netzwerke ein, um seine elektronischen Steuerungen intelligenter zu gestalten. Binäre neuronale Netzwerke sind für die Erkennung von Mustern sehr gut geeignet und können daher eingesetzt werden, um Probleme anders anzugehen.

News

→ MEHR