Schweißnahtanalyse von Röntgenbildern mittels Deep Learning
Mithilfe von KI und Deep Learning entwickelt die Firma Sentin einen digitalen Prüfassistenten zur Bewertung von Röntgenbildern mit Aufnahmen von Schweißnähten, der eine objektive Bewertung der Daten ermöglicht.

Bild: sentin GmbH

Bei der zerstörungsfreien Werkstoffprüfung (ZfP) mit Röntgenstrahlen kann ein Blick ins Innere von Bauteilen geworfen werden, sodass kritische Stellen frühzeitig erkannt und repariert werden können. Ein besonderer Anwendungsfall für diese Methode ist die Prüfung von Schweißnähten bei Rohren. Dortige Risse sind in Anlagen oder Pipelines besonders kritisch für den Betrieb. Um dabei die Sicherheit zu gewährleisten, werden diese vor der Inbetriebnahme und auch danach in regelmäßigen Abständen geprüft. Speziell ausgebildete Prüfer nehmen dazu Röntgenbilder auf und werten diese aus. Bei einem Pipelineprojekt entstehen so viele Tausend Bilder, die häufig – wie bei einem Arzt -vor einen Lichtkasten gehalten, bewertet und in einen Prüfbericht aufgenommen werden. Dieser Bewertungsprozess von sogenannten Ungänzen ist eine hochkomplexe Aufgabe, dessen Qualität von der Erfahrung des Prüfers abhängt. Bei kritischen Fällen ist eine eindeutige Bewertung auch nicht immer möglich. Eine gern zitierte Aussage der Branche ist daher: Zwei Prüfer. Drei Meinungen. Bei einer Anlage können so pro Woche 2.500 Bilder entstehen und jedes wird bis zu 7 Minuten ausgewertet. Ein Prüfer kann sich am Stück ca. 30min Bilder ansehen, bis er kurz pausieren muss. Eine weitere häufig bemühte Aussage ist allerdings auch: Nach 15min sieht man Dinge, die gar nicht da sind.

Digitaler Prüfassistent mit KI

Die sentin GmbH hat es sich zur Aufgabe gemacht, die Fehlererkennung bei visuellen und bildbasierten Prüfungen mit Deep Learning zu automatisieren. Sie entwickelt einen digitalen Prüfassistenten in Zusammenarbeit mit Applus+ RTD, einem weltweit führenden Dienstleistungsunternehmen der ZfP im Energiesektor, und Visus Industry IT, Anbieter einer industriellen Bildmanagementsoftware (JiveX). Der größte Vorteil dieses Systems ist eine objektive Meinung und mehr Zeit für kritische Fälle. Die zunehmend digitaler werdende Prüfung soll dabei durch die automatische Erkennung von Ungänzen beschleunigt werden. Allerdings stößt die regelbasierte Bilderverarbeitung aufgrund der komplexen Fehlerbilder der Schweißnähte schnell an ihre Grenzen. Das Team von sentin verwendet daher Deep Learning, um die Bilder zu analysieren. Ein Problem bei der Bewertung sind die verschiedene Helligkeitsstufen, die sich über die manuelle Bildaufnahme ergeben, sowie die Größe von Fehlstellen. Bei manchen Kontrastverhältnissen fällt es Prüfern teilweise schwer, einen kleinen Punkt oder Fleck richtig zu deuten bzw. die richtigen Bildverhältnisse herzustellen, um eine Bewertung vornehmen zu können. Studien zur Bewertung von Röntgenbildern aus dem Medizinbereich haben aber bereits gezeigt, dass Deep-Learning-Methoden schneller und über 20 Prozent genauer Bilder bewerten als menschliche Experten.

Training der Algorithmen

Bei der Entwicklung eines Deep-Learning-Modells müssen verschiedene Fehlertypen antrainiert werden, die das System dann automatisch lernt. Eine Schweißnaht kann innere und äußere Fehler aufweisen, die in ca. zehn Kategorien eingeteilt werden. Einige sind z.B. Risse, Poren, unvollständige Durchdringung, Spritzer oder Einschlüsse. Durch richtig klassierte Daten, die mit Bounding Boxes (Markierungen, wo im Bild der Fehler liegt) versehen sind, lernt das System, wie ein Mensch der viele Tausend Bilder gesehen hat, wie eine gute Schweißnaht aussieht. Danach kann es eigenständig solche Fehler finden und markieren. Für das Training gilt: je mehr Daten zur Verfügung stehen, desto besser. Durch sogenanntes Transfer Learning, bei dem ein Modell, dass bereits eine ähnliche Aufgabenstellung lösen kann, als Ausgangspunkt genutzt wird, kann bereits mit wenigen dutzend Beispielen ein hochgenaues Modell trainiert werden. So lassen sich die Modelle schnell auch auf z.B. Risse oder Kratzer auf metallischen Oberflächen von Produkten in der Qualitätssicherung umtrainieren. Beim Training ist darauf zu achten, dass die Rate der falsch-negativen Klassierungen (übersehene Fehler) möglichst gering ist. Für einen Anwendungsfall aus dem Luftfahrtbereich haben die entwickelten Modelle bereits eine Genauigkeit von über 99,9 Prozent erreicht.

Seiten: 1 2Auf einer Seite lesen

sentin GmbH
www.sentin.ai
sentin GmbH

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige