- Anzeige -
- Anzeige -
Lesedauer: 0min
Schweißnahtanalyse von Röntgenbildern mittels Deep Learning

Nov 8, 2019 | Technologie

Mithilfe von KI und Deep Learning entwickelt die Firma Sentin einen digitalen Prüfassistenten zur Bewertung von Röntgenbildern mit Aufnahmen von Schweißnähten, der eine objektive Bewertung der Daten ermöglicht.

Bild: sentin GmbH

Bei der zerstörungsfreien Werkstoffprüfung (ZfP) mit Röntgenstrahlen kann ein Blick ins Innere von Bauteilen geworfen werden, sodass kritische Stellen frühzeitig erkannt und repariert werden können. Ein besonderer Anwendungsfall für diese Methode ist die Prüfung von Schweißnähten bei Rohren. Dortige Risse sind in Anlagen oder Pipelines besonders kritisch für den Betrieb. Um dabei die Sicherheit zu gewährleisten, werden diese vor der Inbetriebnahme und auch danach in regelmäßigen Abständen geprüft. Speziell ausgebildete Prüfer nehmen dazu Röntgenbilder auf und werten diese aus. Bei einem Pipelineprojekt entstehen so viele Tausend Bilder, die häufig – wie bei einem Arzt -vor einen Lichtkasten gehalten, bewertet und in einen Prüfbericht aufgenommen werden. Dieser Bewertungsprozess von sogenannten Ungänzen ist eine hochkomplexe Aufgabe, dessen Qualität von der Erfahrung des Prüfers abhängt. Bei kritischen Fällen ist eine eindeutige Bewertung auch nicht immer möglich. Eine gern zitierte Aussage der Branche ist daher: Zwei Prüfer. Drei Meinungen. Bei einer Anlage können so pro Woche 2.500 Bilder entstehen und jedes wird bis zu 7 Minuten ausgewertet. Ein Prüfer kann sich am Stück ca. 30min Bilder ansehen, bis er kurz pausieren muss. Eine weitere häufig bemühte Aussage ist allerdings auch: Nach 15min sieht man Dinge, die gar nicht da sind.

Digitaler Prüfassistent mit KI

Die sentin GmbH hat es sich zur Aufgabe gemacht, die Fehlererkennung bei visuellen und bildbasierten Prüfungen mit Deep Learning zu automatisieren. Sie entwickelt einen digitalen Prüfassistenten in Zusammenarbeit mit Applus+ RTD, einem weltweit führenden Dienstleistungsunternehmen der ZfP im Energiesektor, und Visus Industry IT, Anbieter einer industriellen Bildmanagementsoftware (JiveX). Der größte Vorteil dieses Systems ist eine objektive Meinung und mehr Zeit für kritische Fälle. Die zunehmend digitaler werdende Prüfung soll dabei durch die automatische Erkennung von Ungänzen beschleunigt werden. Allerdings stößt die regelbasierte Bilderverarbeitung aufgrund der komplexen Fehlerbilder der Schweißnähte schnell an ihre Grenzen. Das Team von sentin verwendet daher Deep Learning, um die Bilder zu analysieren. Ein Problem bei der Bewertung sind die verschiedene Helligkeitsstufen, die sich über die manuelle Bildaufnahme ergeben, sowie die Größe von Fehlstellen. Bei manchen Kontrastverhältnissen fällt es Prüfern teilweise schwer, einen kleinen Punkt oder Fleck richtig zu deuten bzw. die richtigen Bildverhältnisse herzustellen, um eine Bewertung vornehmen zu können. Studien zur Bewertung von Röntgenbildern aus dem Medizinbereich haben aber bereits gezeigt, dass Deep-Learning-Methoden schneller und über 20 Prozent genauer Bilder bewerten als menschliche Experten.

Training der Algorithmen

Bei der Entwicklung eines Deep-Learning-Modells müssen verschiedene Fehlertypen antrainiert werden, die das System dann automatisch lernt. Eine Schweißnaht kann innere und äußere Fehler aufweisen, die in ca. zehn Kategorien eingeteilt werden. Einige sind z.B. Risse, Poren, unvollständige Durchdringung, Spritzer oder Einschlüsse. Durch richtig klassierte Daten, die mit Bounding Boxes (Markierungen, wo im Bild der Fehler liegt) versehen sind, lernt das System, wie ein Mensch der viele Tausend Bilder gesehen hat, wie eine gute Schweißnaht aussieht. Danach kann es eigenständig solche Fehler finden und markieren. Für das Training gilt: je mehr Daten zur Verfügung stehen, desto besser. Durch sogenanntes Transfer Learning, bei dem ein Modell, dass bereits eine ähnliche Aufgabenstellung lösen kann, als Ausgangspunkt genutzt wird, kann bereits mit wenigen dutzend Beispielen ein hochgenaues Modell trainiert werden. So lassen sich die Modelle schnell auch auf z.B. Risse oder Kratzer auf metallischen Oberflächen von Produkten in der Qualitätssicherung umtrainieren. Beim Training ist darauf zu achten, dass die Rate der falsch-negativen Klassierungen (übersehene Fehler) möglichst gering ist. Für einen Anwendungsfall aus dem Luftfahrtbereich haben die entwickelten Modelle bereits eine Genauigkeit von über 99,9 Prozent erreicht.

Seiten: 1 2Auf einer Seite lesen

Autor: Maximilian Topp, CTO, sentin GmbH
Firma: sentin GmbH
www.sentin.ai

News

- Anzeige -

Weitere Beiträge

Das könnte Sie auch interessieren

Studie von VDE und Bertelsmann Stiftung: KI-Ethik messbar machen

In einer neuen Studie zeigen die Technologieorganisation VDE und die Bertelsmann Stiftung, wie sich Ethikprinzipien für künstliche Intelligenz (KI) in die Praxis bringen lassen. Zwar gibt es eine Vielzahl an Initiativen, die ethische Richtlinien für die Gestaltung von KI veröffentlicht haben, allerdings bis dato kaum Lösungen für deren praktische Umsetzung. Genau hier setzt der VDE als Initiator und Leiter der ‚AI Ethics Impact Group‘ gemeinsam mit der Bertelsmann Stiftung an.

mehr lesen

KI in der medizinischen Diagnostik

Das Robotik Startup Robominds hat in Reaktion auf die aktuelle Corona-Pandemie eine Lösung entwickelt, die Roboterarme befähigt, Proben und Reagenzien für die medizinische Diagnostik vor zu sortieren. Auf Basis künstlicher Intelligenz erkennt das Soft-und Hardwaresystem Robobrain Position und Farbe der Probenröhrchen und kann diese ohne vorheriges Einlernen voll automatisiert vor- und einsortieren.

mehr lesen

Künstliche Intelligenz für ‚Beyond 5G‘

Während viele europäische Staaten gerade dabei sind, den Mobilfunk der 5. Generation aufzubauen, arbeitet die Forschung bereits an seiner Optimierung. Denn obwohl 5G seinen Vorgängern weit überlegen ist, hat auch der neueste Mobilfunkstandard noch Verbesserungspotenzial: Besonders in urbanen Gebieten, in denen ein direkter Sichtkontakt zwischen Sender und Empfänger erschwert ist, funktioniert die Funkverbindung oftmals noch nicht zuverlässig. In dem kürzlich gestarteten EU-Projekt Ariadne erforschen nun elf europäische Partner, wie sich durch die Nutzung von hohen Frequenzbändern und künstlicher Intelligenz eine fortschrittliche Systemarchitektur für »Beyond 5G« entwickeln lässt.

mehr lesen

Universität Stuttgart und IBM treiben KI-Forschung in Deutschland voran

IBM (NYSE: IBM) und die Universität Stuttgart gaben bekannt, dass die Universität als erste Institution in Europa dem AI Horizons Network beitritt, um im Rahmen einer mehrjährigen Kooperation die KI-Forschung zur Interaktion von Sprache und Wissen voranzutreiben. Das AI Horizons Network ist ein weltweites Netzwerk von Forschenden und Promovierenden, das von IBM ins Leben gerufen wurde, um in einer Reihe von Forschungsprojekten und Experimenten die Anwendung von künstlicher Intelligenz, maschinellem Lernen, maschineller Sprachverarbeitung und verwandter Technologien gemeinsam voranzubringen. Zum jetzigen Zeitpunkt sind weltweit bereits über 80 wissenschaftliche Arbeiten aus dem Netzwerk veröffentlicht worden.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.