Zeitkritisches Machine Learning in intelligenten Kameras
Herzstück der intelligenten Kamera iam von NET ist eine System-on-Chip(SoC)-Plattform mit integriertem FPGA und ARM CPU. Sie befähigt die Smart-Kamera dazu auch zeitkritische Machine-Learning-Aufgaben performant zu lösen, die bis dahin nur von Host-PCs mit Multi-Core-Prozessor-Architekturen bewältigt werden konnten.
Bild 1 | Mit der intelligenten Kamera iam können aufgrund ihrer SoC-Architektur auch Machine Learning und andere komplexe Anwendungen direkt in der Kamera realisiert werden.
Bild 1 | Mit der intelligenten Kamera iam können aufgrund ihrer SoC-Architektur auch Machine Learning und andere komplexe Anwendungen direkt in der Kamera realisiert werden.Bild: NET New Electronic Technology GmbH

Zentrales Element der Kamera ist ein Xilinx SoC aus der Zynq-Familie. Dieser Baustein kombiniert einen ARM-Prozessor mit programmierbarer FPGA-Logik und ermöglicht so ein kompaktes Systemdesign. Bei der Implementierung verschiedenster Bildverarbeitungsaufgaben können Software und FPGA-beschleunigte Signalverarbeitung flexibel kombiniert werden. Auf Bilddaten im gemeinsamen Speicher kann sowohl vom Prozessorsystem als auch von der programmierbaren Logik zugegriffen werden. Das lokal verzahnte Zusammenspiel der SoC-Komponenten garantiert minimale Latenz und hohe Leistungseffizienz. Insbesondere die Berechnung von neuronalen Netzen (CNN) kann durch FPGA-basierte Signalverarbeitung erheblich beschleunigt werden, was die iam zur idealen Lösung für Maschine-Learning-Aufgaben macht. Die Optimierung und das Training der Netzwerke werden üblicherweise mit interaktiven Werkzeugen auf leistungsstarken CPU/GPU-Systemen durchgeführt. Für die Ausführung des fertigen Netzwerks steht ein FPGA-basierter Beschleuniger-Block für CNN-Netzwerke (DPU) zur Verfügung.

Aufbau der Plattform

NET liefert eine fertige Konfiguration für das FPGA-System, die ein DMA-Sensordaten-Interface und einen DPU-Beschleuniger enthält. Auf dem vorinstallierten und vollständig konfigurierten Embedded-Linux Betriebssystem läuft eine optimierte Version von SynView, dem plattformübergreifenden Bildverarbeitungssystem von NET. SynView kann das Sensor-Frontend von iam als normales Eingabegerät öffnen, Aufnahmeparameter steuern und Bilder einziehen. Die eingesetzte SynView-Version enthält zudem eine GigE-Vision-Schnittstelle, welche Bilder über die Ethernet Verbindung der Kamera ausgeben kann und eine GenICam kompatible Steuerung von einem Host-System ermöglicht. Durch die Kombination der Komponenten ist es möglich, große Teile einer Anwendung auf einem Host-PC zu entwickeln und zu testen, um sie anschließend mit geringen Anpassungen auf die intelligente Kamera übertragen zu können. Zudem kann iam zu Einrichtungs- und Überwachungszwecken jederzeit von einer GenICam-kompatiblen Software als Eingabegerät verwendet werden.

Bild 2 | Darstellung des hardware-beschleunigten 
Bildverarbeitungsprozesses in der Smart-Kamera iam
Bild 2 | Darstellung des hardware-beschleunigten Bildverarbeitungsprozesses in der Smart-Kamera iamBild: NET New Electronic Technology GmbH

Arbeiten in gewohnter Umgebung

Netzwerke für Machine-Learning-Anwendungen können mit bekannten Werkzeugen, basierend auf Tensorflow oder Caffe, entwickelt und trainiert werden. Für die resultierenden Netzbeschreibungen stehen passende Xilinx Vitis AI Tools bereit, welche die Netzwerke für die Ausführung in der DPU automatisch anpassen und optimieren. Zudem steht dem Anwender eine einsatzfähige Laufzeitumgebung für die benötigten Konvertierungstools zur Verfügung. Eine Bildverarbeitungsanwendung kann ein so vorbereitetes Netzwerk dynamisch laden und ausführen. NET unterstützt den Einstieg durch bereitgestellte Referenz-Anwendungen für den Einsatz von CNN-Netzen.

Zahlreiche Einsatzgebiete

In der Praxis ergibt sich damit für die iam Smart-Kamera ein breites Anwendungsfeld. Exemplarisch lassen sich Robotik-Applikationen in der Landwirtschaft anführen, wo kompakte Smart-Vision-Lösungen für Obst und Gemüse auf dem Acker oder der Wiese eingesetzt werden können. Geht es um die Vollständigkeitsprüfung von Lebensmittelverpackungen hat eine regelbasierte Software zusehends das Nachsehen. Lernende beziehungsweise trainierte Systeme leisten immer bessere Arbeit, weil Surimi, Aal und Nori-Blätter ein hohes Maß an Heterogenität aufweisen. Schließlich existiert auch bei der optischen Inspektion und Sortierung von Arzneimitteln in der Pharmazie eine große Varianz, die modernen Machine-Learning-Verfahren ´on the edge´ in Embedded-Vision-Kameras ein Handlungsfeld bietet. Ist zudem die Möglichkeit gegeben, eine anwendungsspezifische Auslegung mit bereits passendem mechanischem oder optischem Zubehör umzusetzen, wird zusätzlicher Integrationsaufwandvermieden.

Seiten: 1 2Auf einer Seite lesen

NET New Electronic Technology GmbH
www.net-gmbh.com

Das könnte Sie auch Interessieren

Bild: IFS Deutschland GmbH & Co. KGBild:©Tierney/stock.adobe.comBild: acatech - Dt. Akademie der TechnikwissenschaftenBild: IFS Deutschland GmbH & Co. KGBild: Zentrum für Europäische WirtschaftsforschungBild: ©branex/fotolia.com
Bild: IFS Deutschland GmbH & Co. KGBild:©Tierney/stock.adobe.comBild: acatech - Dt. Akademie der TechnikwissenschaftenBild: IFS Deutschland GmbH & Co. KGBild: Zentrum für Europäische WirtschaftsforschungBild: ©branex/fotolia.com
Erfolgsfaktor künstliche Intelligenz – immer mehr Maschinenbauer und Startups finden zusammen

Erfolgsfaktor künstliche Intelligenz – immer mehr Maschinenbauer und Startups finden zusammen

Bild: IFS Deutschland GmbH & Co. KGBild:©Tierney/stock.adobe.comBild: acatech - Dt. Akademie der TechnikwissenschaftenBild: IFS Deutschland GmbH & Co. KGBild: Zentrum für Europäische WirtschaftsforschungBild: ©branex/fotolia.com Aus der Analyse ergibt sich...