- Anzeige -
- Anzeige -
- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: 9min
Quantensprung für die künstliche Intelligenz

Sep 10, 2020 | Technologie

Quantencomputer werden die künstliche Intelligenz und das Maschinelle Lernen tiefgreifend verändern und völlig neue Anwendungsmöglichkeiten erschließen. In einer Studie erläutern Experten der Fraunhofer-Allianz Big Data und künstliche Intelligenz gemeinsam mit wissenschaftlichen Partnern, wie Quantencomputer Verfahren des Maschinellen Lernens beschleunigen können und welche Potenziale ihr Einsatz in Industrie und Gesellschaft mit sich bringen wird. Die Studie stellt grundlegende Konzepte und Technologien des Quantencomputings vor, analysiert die aktuelle Forschungs- und Kompetenzlandschaft und zeigt Marktpotenziale auf.

Bild: IBM

Viele Aufgaben im Bereich Big Data, künstliche Intelligenz (KI) und Maschinelles Lernen (ML) sind heute, trotz fortschrittlicher Rechenleistung von Computersystemen, nur mit immensem Zeit- und Rechenaufwand lösbar – manche sind sogar so komplex, dass ihre Berechnung mit heutigen Rechnerkapazitäten Jahre dauern würde. Bei der Entwicklung neuer Impfstoffe z.B. könnten KI-Verfahren helfen – die Biologie ist jedoch so komplex, dass die Simulation der molekularen Reaktionen im Körper bei einer realis­tischen Rechenzeit nach heutigem Stand nur sehr unvollständig abgebildet werden könnte. Es braucht einen ‚Quantensprung‘, um die künstliche Intelligenz und das Maschinelle Lernen auf ein neues Level zu heben. Hier setzt das Quantencompu­ting an.

„Im Quantencomputing steckt das Potenzial, die prinzipiellen Beschränkungen klassi­scher Computer zu überwinden“, sagt Prof. Dr. Christian Bauckhage, wissenschaftlich­er Direktor des Fraunhofer-Forschungszentrums Maschinelles Lernen. „Das ist uns bei Fraunhofer schon lange bewusst und wir forschen seit Jahren an der Anpassung von Algorithmen des Maschinellen Lernens an die Anforderungen von Quantencomputern. Lange waren diese Forschungen jedoch theoretische Konzepte. Das ändert sich jetzt: Schon bald werden wir in der Lage sein, ML-Algorithmen auf realen Quantencompu­tern anzuwenden.“

Welche Quanteneffekte spielen beim Quantencomputing eine Rolle? Wie können sie Rechenverfahren beschleunigen und völlig neue Anwendungen ermöglichen – etwa im Bereich Logistik & Mobilität, in der Pharmaindustrie oder in der Finanzwirtschaft? Das erklären Expertinnen und Experten der Fraunhofer-Allianz Big Data und künstliche Intelligenz sowie des Fraunhofer-Forschungszentrums Maschinelles Lernen in Koopera­tion mit dem Kompetenzzentrum Maschinelles Lernen Rhein-Ruhr ML2R in ihrer Studie.

Wie Quantencomputer Berechnungen beschleunigen

Quantencomputer nutzen zur Informationsverarbeitung Quanteneffekte wie Superposi­tion oder Verschränkung und können dadurch prinzipiell schneller Ergebnisse liefern. Während ein digitaler Computer mit Bits rechnet, arbeitet ein Quantencomputer mit Qubits, die im Gegensatz zu den klassischen Bits nicht nur genau einen von zwei mög­lichen Zuständen annehmen können, sondern auch eine beliebige Überlagerung bei­der. Verfahren des Maschinellen Lernens lassen sich für Quantencomputer so anpassen, dass sie mehrere Lösungswege gleichzeitig beschreiten. Damit kann ein einzelner Quanten­computer schneller Lösungen finden als viele klassische Computer in einem Cluster, wie etwa einer Cloud. Anhand ausgewählter Beispiele zeigt die Studie, wie Quantenalgorithmen für das Durchsuchen großer Datenbanken, das Lösen komplexer Gleichungssysteme oder kombinatorischer Optimierungsprobleme genutzt werden können. Neben den logischen Konzepten von Quantencomputern stellt die Studie auch Techniken für die Implementierung der Hardware vor, wie photonische Quantencomputer, Ionenfallen oder die bisher am weitesten verbreitete Technologie der supraleitenden Schaltungen.

Wertschöpfungspotenziale durch Simulation und Optimierung

Der Einsatz von Quantencomputern für Berechnungen auf Basis des Maschinellen Lernens wird zukünftig in vielen Industriebereichen für eine effizientere Wertschöpfung sorgen. Konkrete Anwendungsgebiete stellt die Studie ausführlich vor. Besonders prädestiniert sind Quantencomputer aufgrund ihrer Konstruktionsprinzipien dazu, Einblicke in quantenmechanische Sys­teme, wie etwa Moleküle, zu gewähren. Lassen sich Moleküle und ihre Eigenschaften in vertretbarer Zeit simulieren, so eröffnen sich in Zukunft möglicherweise neue Produktionsverfahren für die chemische Industrie. Ebenso könnten Pharmaunter­nehmen die Medikamentenentwicklung beschleunigen oder die Ingenieurwissenschaften von einer gezielten Materialentwicklung profitieren. Großes Wertschöpfungspotenzial liegt auch in der Lösung von Optimierungsproblemen mithilfe von Quantencomputern. Diese stellen sich z.B. in der Logistik, wenn es darum geht, Ressourcen optimal einzusetzen. Aber auch in der Finanzwirtschaft und bei der Planung von Telekommunikationsnetzen spielen Optimierungsfragen eine entscheidende Rolle. Zudem gibt es schon heute Quantenalgorithmen, die große Auswirkungen auf die Kryptographie und sichere, verschlüsselte Kommunikation haben können.

Marktsituation und internationaler Wettbewerb

An der Entwicklung von Quantencomputern arbeiten alle Industrienationen. Öffent­liche und private Investitionen, vor allem aus China, den USA und der Euro­päischen Union, haben bereits einen erheblichen Beitrag zur bisherigen Entwicklung von Quantentechnologien geleistet. Dabei liegt China mit rund zehn Milliarden US-Dollar an Investitionen im Vergleich zu den USA (rund 1,3 Mrd. USD) und Europa (rund 1 Mrd. USD) bislang noch weit vorn. Die Fraunhofer-Studie gibt einen Überblick über die weltweite Forschungs-, Förder-, Patent- und Publikationslandschaft und zeigt das starke Wachstum dieses Marktes auf, das sich seit 2016 rasant beschleunigt hat. So hat sich etwa die Zahl der weltweit erteilten Patente von 2015 bis 2019 mehr als verdreifacht. Gemessen an der Anzahl an Publikationen ist Europa, beziehungs­weise die EMEA-Region, inter­national führend in der akademischen Quantenphysik – mit heute rund 50 Prozent aller wissenschaftlichen Publikationen und fast 40 Prozent der Forschenden in diesem Bereich.

Seiten: 1 2Auf einer Seite lesen

Autor:
Firma: Fraunhofer IAIS
www.iais.fraunhofer.de
- Anzeige -

News

- Anzeige -

Weitere Beiträge

Das könnte Sie auch interessieren

Kunden begeistern und binden

Mit gutem Service können sich Firmen von der Konkurrenz abheben. Dafür müssen die Mitarbeiter schnell auf relevante Daten zugreifen können und der Kunde an allen Touchpoints gute Erfahrungen machen. Wissensdatenbanken, künstliche Intelligenz sowie unterschiedliche Supportkanäle helfen, das angestrebte Servicelevel zu erreichen.

mehr lesen

Künstliche Intelligenz in ERP-Systemen

ERP-Systeme bilden den Kern der Unternehmens-IT und stellen die zentrale Datendrehscheibe dar. Zunehmend integrieren Anbieter intelligente Algorithmen und KI-Module in ihre Systeme. Ein Team des Fraunhofer-Instituts für Intelligente Analyse- und Informationssysteme IAIS hat das Thema Künstliche Intelligenz und ERP-Systeme aus Sicht von Unternehmen untersucht und zwei Publikationen veröffentlicht: Die Studie »Wie eine ERP-Einführung gelingt« stellt Faktoren vor, die zum Erfolg einer ERP-Einführung beitragen. In Zusammenarbeit mit der Kompetenzplattform Künstliche Intelligenz Nordrhein-Westfalen (KI.NRW) ist zudem die Studie »Künstliche Intelligenz in ERP-Systemen« entstanden. Neben einer Darstellung des Status Quo zum Einsatz von KI fokussiert sie Chancen, Trends und Risiken von KI in ERP-Systemen. Die Publikationen stehen kostenfrei zum Download zur Verfügung.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.