Spezialisten nach dem Co-Innovation-Prinzip verzahnen
KI und Edge kooperativ projektiert
Durch Datenverarbeitung am Netzwerkrand können KI-Systeme in Echtzeit auf Anomalien im Maschinenpark reagieren und Kosten sparen. Um die Spezialisten für Hardware, Vernetzung, KI und weitere Software effizient zusammenzubringen, hat sich der Ansatz Co-Innovation bewährt.
Bild: Smart Systems Hub GmbH

Laut Grand View Research umfasste der Edge Computing-Weltmarkt im Jahr 2020 bereits 4,68 Milliarden Dollar und wird sich bis zum Jahr 2028 nahezu verzehnfachen. Die Entwicklung erklärt sich nicht zuletzt daraus, dass sich Edge-Konzepte als Schlüsseltechnologie für Digitalisierungsstrategien auf den Weg zur Industrie 4.0 herausgestellt haben. Viele Argumente sprechen dafür, sich weder völlig auf reine Cloud-Lösungen, noch allein auf eigene lokale Rechenzentren zu verlassen. Gerade wenn ein Unternehmen Aufgaben automatisieren, Produktivitätsreserven erschließen und resilienter gegen äußere und innere Störungen werden will.

Predictive Maintenance und integrierte Fertigung

Beispiele für Edge-Anwendungsszenarien sind der nachträgliche Ausbau eines Industriebetriebes hin zu einer – dezentral durch künstliche Intelligenz organisierten – Computerintegrierten Produktion (Computer Integrated Manufacturing, kurz CIM) oder die Integration vorausschauender Wartung (Predictive Maintenance, kurz PM). Beide Szenarien machen es in der Regel notwendig, Maschinen, Transportsysteme, Regeltechnik, Lose, womöglich auch einzelne Werkstücke mit eigener Sensorik und einem gewissen Maß an Eigenintelligenz nachzurüsten (Retrofit).

Einstieg mit günstiger Hardware

Damit dies möglich ist, wird die Software auf den Endgeräten ausgeführt und auch Daten werden auf den Devices gespeichert. Besonders leistungsfähige Hardware ist deshalb einer der Grundpfeiler für Edge Computing. Diese industrietauglichen Devices sind mittlerweile für niedrige dreistellige Beträge zu haben, was den Einsatz auch für kleinere Unternehmen rentabel macht.

Sichere Daten und kurze Latenzen

Vor allem in Zusammenspiel mit KI-Technologien, 5G-Vernetzung und dem Einsatz künstlicher neuronaler Netze auf Sensorsystem-Ebene sind durch den Edge-Ansatz Anwendungen möglich mit:

Seiten: 1 2Auf einer Seite lesen

Smart Systems Hub GmbH

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige