- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: 6min
Künstliche Intelligenz
Eine App zur Bauteilerkennung

Mai 7, 2020 | Technologie

In der Bildverarbeitung kommt künstliche Intelligenz seit langem zum Einsatz. Neuronale Netze erkennen beispielsweise Objekte des alltäglichen Lebens mit einer höheren Genauigkeit wieder als der Mensch. Forscher des Fraunhofer-Instituts für Produktionsanlagen und Konstruktionstechnik IPK nutzen dies und passen die Algorithmen für Industrieanwendungen an – beispielsweise zur Bauteilerkennung.
Bild: Fraunhofer-Institut IPK

Unternehmen produzieren zunehmend an verschiedenen Standorten und arbeiten mit mehreren Zulieferfirmen zusammen. Dabei sind nicht alle gelieferten Bauteile mit Barcodes oder Typenschildern ausgestattet, weshalb die entsprechenden Gegenstände im Wareneingang erneut zugeordnet werden müssen. Ein manueller Prozess, bei dem Mitarbeiter in einem Katalog nach ähnlichen Einzelteilen suchen, um diese für die logistische Weiterverarbeitung eindeutig identifizieren zu können. Einer Möglichkeit, diesen Prozess zu beschleunigen, widmet sich das Fraunhofer IPK in Berlin. Dabei bedienen sich die Forscher dem maschinellen Lernen. Sie nutzen sogenannte Convolutional Neural Networks (CNNs) für die Wiedererkennung von Bauteilen aus dem Produktionsumfeld. Dazu gehören etwa Schrauben, Klemmen, Stutzen, Rohre, Schläuche, Kabel, Microcontroller und andere Elektronik.

Wareneingang entlasten

„In der Bildverarbeitung haben sich CNNs durchgesetzt. Um verlässlich etwa 1.000 Objekte des alltäglichen Lebens zu erkennen, sind eine Million Bilder erforderlich, die diese Netze als Trainingsdaten nutzen. Unsere Aufgabe war es, auch mit wenig Daten einen Algorithmus für Industrieanwendungen zu generieren, um in unserem Fall Bauteile ohne Code automatisiert wiederzuerkennen und den Werker am Wareneingang zu entlasten. Ziel ist es, dass der Algorithmus problemlos auch stark ähnliche Objekte voneinander unterscheiden kann, wie etwa Schrauben der gleichen Norm, aber unterschiedlicher Größen, oder Turbolader unterschiedlicher Baureihen“, sagt Jan Lehr, Wissenschaftler am Fraunhofer IPK. „Mithilfe von eigens entwickelten Algorithmen schränken wir den Suchradius auf fünf bis zehn Objekte ein. Der Mitarbeiter muss nicht mehr in der kompletten Palette suchen, die ein Großlager umfasst.“

Um dies zu realisieren, entwickelt das Forschungsteam mit dem Logic.Cube ein Erfassungssystem. Die zu erkennenden Objekte mit einer maximalen Kantenlänge von 40 Zentimetern werden in die würfelförmige Vorrichtung mit integrierter Waage gelegt und dort mit bis zu neun Kameras aufgenommen. Ein Bildverarbeitungsalgorithmus vermisst Höhe, Breite und Länge der Gegenstände, um die Größe des erforderlichen Kartons oder des Regallagerplatzes berechnen zu können. Zeitgleich wird das fotografierte Bilderset zusammen mit der Materialnummer in einer Datenbank gespeichert. Die gesammelten Daten werden dann genutzt, um den KI-Algorithmus zu trainieren, sodass er in der Lage ist, die unterschiedlichsten Bauteile wiederzuerkennen.

Auch als App

Das Forscherteam hat die Funktionen des Erfassungssystems zudem in eine browserbasierte, betriebssystemunabhängige App übertragen, die auf Smartphones, Tablets, Laptops und Desktop-Rechnern läuft. Dabei musste der Trainingsdatensatz mit Smartphone-Daten angereichert und neu trainiert werden. „Wir haben die Algorithmen mit hundert Bauteilen getestet, die in unterschiedlichsten Szenen fotografiert wurden. Pro Bauteil wurden 50 Bilder aufgenommen. Die App zeigt dem Anwender innerhalb von wenigen Sekunden fünf und weniger infrage kommende Bauteile an, unabhängig vom Licht, vom Hintergrund und von der Szenerie. Die Erkennung ist so robust, dass sie die manuelle Suche ersetzen kann“, sagt der Ingenieur. Im Logic.Cube wurden Erkennungsraten von 98 Prozent erzielt, der Suchradius wurde von 4.500 Bildern auf fünf eingeschränkt. Eine ebensolche Erfolgsquote soll künftig mit der App erzielt werden.

Lernendes System

Dabei werden die Bilder übers Internet oder das firmeneigene Intranet in einer lokalen Edge-Cloud abgelegt. Dort findet auch die eigentliche Bildverarbeitung und Wiedererkennung statt. Das Gesamtsystem ist so gestaltet, dass es bei der Benutzung fortlaufend weitere Daten sammelt, die nach einer bestimmten Zeit für ein erneutes Anlernen der Algorithmen verwendet werden können.

Derzeit arbeiten die Forscher daran, das Set an Bilddaten zu erweitern, den Katalog zu digitalisieren und in die App zu integrieren. Alle nachfolgenden Prozesse, wie die Weiterbearbeitung und eventuelle Nachbestellung, sollen künftig über die Edge-Cloud angestoßen werden. Zudem optimieren Lehr und seine Kollegen die Algorithmen, um auch stark ähnlich aussehende Objekte wiedererkennen zu können. In den erfolgten Testläufen war das System in der Lage, sogar Schrauben der gleichen Norm, aber unterschiedlicher Größe korrekt wiederzuerkennen.

Autor:
Firma: Fraunhofer-Institut IPM
www.ipm.fhg.de

News

Weitere Beiträge

Das könnte Sie auch interessieren

KI-Studie: Unternehmen gewichten Technologie und Qualifizierung gleich

Unternehmen mit KI-Projekten sind dann am erfolgreichsten, wenn die Qualifizierung der eigenen Mitarbeiter den gleichen Stellenwert wie Investitionen in intelligente Technologien hat. Dazu gehört auch das Schaffen einer Lernkultur, die diese Qualifizierungsmassnahmen trägt. Das ist das Kernergebnis einer im Auftrag von Microsoft durchgeführten internationalen Studie. In einer Datenanalyse wurden dafür rund eine halbe Million englischsprachiger Beiträge ausgewertet und zusätzlich im März 2020 Interviews mit rund 12.000 Fach- und Führungskräften aus 20 Ländern geführt.

mehr lesen

Startups für KI und das Internet der Dinge

Vinci Energies in Deutschland reagiert auf den digitalen Wandel mit einem Ausbau der eigenen Startup-Offensive: dem Digitalschmiede Startup-Radar. Ziel der Initiative ist es, DACH-weit Startups zu identifizieren, die durch innovative Technologien und Lösungen das Leistungsspektrum der Vinci Energies Marken ergänzen können. Als Systemintegrator setzt Vinci Energies auf enge Kooperationen mit jungen Firmen, um ihre Expertise in Kundenprojekte einzubinden und so ein innovatives Ökosystem zu schaffen, das Kundenunternehmen bei immer komplexer werdenden Anforderungen unterstützt. Unter anderem sind Hellsicht und S O NAH schon Teil dieser Kooperation, die insgesamt bereits mehr als 20 feste Startup-Partnerschaften umfasst.

mehr lesen

Künstliche Intelligenz direkt an die Maschine bringen

Bisher haben industrielle Anwendungen der künstlichen Intelligenz (KI) aufgrund von Latenzzeiten und hohen Datenmengen bei der Cloudanbindung nur bedingt überzeugt. Entscheidend ist darum, KI direkt an die Maschine zu bringen und dort – direkt an der Quelle – Daten in Echtzeit zu interpretieren. Mit der Plattform Scraitec tut der KI-Spezialist Resolto genau dies, beispielsweise bei einem Haushaltsgeräte- oder Automobilhersteller.

mehr lesen

Teil 3 – Wie effizient ist das autonome System?

Die Arbeitsgemeinschaft Autonome Systeme der VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik hat zehn Grundsatzfragen zum Thema künstliche Intelligenz und autonome Systeme formuliert. Den Diskurs zu diesen Kernfragen im Umgang mit KI bildet die IT&Produktion einer Artikelserie ab. In diesem Interview erörtert Dr. Eckhard Roos, Leiter Industry Segment Management Process Automation bei Festo und Mitglied des Vorstands der VDI/VDE-GMA, wie effizient ein autonomes System ist.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.