- Anzeige -
- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: 7min
Digitaler Zwilling im Praxiseinsatz

Jul 7, 2020 | Technologie

In einem Use Case in der industriellen Praxis führten gelockerte Schrauben an kritischen Verbindungen dazu, dass Großgeräte zu heiß wurden und in die Notabschaltung gingen. Ein digitaler Zwilling hilft jetzt, diesen Effekt früh zu bemerken.
Bild: ©Anatoly Stojko/stock.adobe.com

Bei beanspruchten Großgeräten können sich mit der Zeit die Schraubverbindungen der Starkstromanschlüsse lösen. Für den Gerätehersteller und die Anwender kann dies problematisch werden, da die gelockerten Verbindungen zur Überhitzung des Geräts bis hin zur Notabschaltung sowie zu thermischen Defekten an einzelnen Komponenten führen können. Ungeplante Stillstandszeiten und Reparaturen durch einen Service-Techniker sind die Folge. Die naheliegende Lösung für den Gerätehersteller ist ein System, das bereits vor dem Auftreten erster Schäden darüber informiert, wenn ein Gerät von gelockerten Schraubverbindungen betroffen ist. So können Techniker in vergleichsweise kurzen, kostengünstigen und besser planbaren Service-Einsätzen vor Ort das Problem lösen.

Historische Daten integriert

Der Gerätehersteller beauftragte einen Softwaredienstleister damit, eine solche Lösung zu entwickeln. Dafür stellt er Temperaturdaten zur Verfügung, die Sensoren an den Geräten über mehrere Jahre hinweg gesammelt haben. Die Daten sind ergänzt um dokumentierte Defekte, also um den auffälligen Zeitraum vor dem Defekt sowie den Ausfall- und Reparaturzeitpunkt. Aus diesen historischen Daten sollten mit statistischen Methoden sowie Machine Learning Rückschlüsse und erkennbare Muster hergeleitet werden, die auf Geräte mit gelockerten Schraubverbindungen hindeuten. Zeigt ein Gerät künftig ein ähnliches Temperaturmuster, sollte die Software den Hersteller rechtzeitig warnen. In der Praxis zeigten Methoden wie Random Forest und Zeitreihenanalysen jedoch, dass sich jedes Gerät hinsichtlich der Temperaturentwicklung anders verhält. Zudem verzeichnen die Temperatursensoren in Abhängigkeit ihrer Position unterschiedlich starke Temperaturschwankungen. Konkret erkennbare Muster für lockere Schraubverbindungen konnten anhand der Daten dadurch nicht identifiziert werden.

Die visualisierte theoretische Temperaturentwicklung des physikalischen Modells (Orange) im Vergleich zur tatsächlichen Temperaturentwicklung (Blau) bei normalem Systemverhalten zeigt bereits eine große Übereinstimmung.
Die visualisierte theoretische Temperaturentwicklung des physikalischen Modells (Orange) im Vergleich zur tatsächlichen Temperaturentwicklung (Blau) bei normalem Systemverhalten zeigt bereits eine große Übereinstimmung.Bild: Infoteam Software AG

Mehr Information notwendig

Der Gerätehersteller stellte deshalb weitere Daten in Form von Betriebsdaten, etwa Zeitreihen über ausgeführte Gerätefunktionen, zur Verfügung, die der Softwaredienstleister in Nutzungs- und Pausenzeiten unterteilte. Im Anschluss wurden diesen Zeiten die gemessenen Temperaturen aller Sensoren zugeordnet. Die Verknüpfung von Betriebsdaten und Temperaturdaten bot nun die Möglichkeit, ein einfaches Modell für die Temperaturentwicklung während der Pausenzeiten abzuleiten. Dieses diente als Basis für die Entwicklung eines erweiterten physikalischen Modells der Temperaturentwicklung in Abhängigkeit zu den Betriebsdaten. Ein solcher digitaler Zwilling ermöglicht es, den theoretischen Temperaturverlauf mit dem tatsächlichen zu vergleichen und Abweichungen festzustellen.

KI-basiertes Modell

Bedingt durch die Gerätekomplexität ist dieses physikalische Modell jedoch mit großen Toleranzen behaftet, da nicht alle in den Daten versteckten Abhängigkeiten identifizierbar bzw. mathematisch modellierbar sind. Deshalb und aufgrund der großen Datenmengen – Daten von 10.000 Geräten wurden über mehrere Jahre erfasst – verfolgt der Softwaredienstleister zusätzlich zum physikalischen Modell den Ansatz eines KI-basierten Modells, um nutzungsabhängige Temperaturverläufe vorherzusagen. Ein solches Modell benötigt kein Expertenwissen, sondern entwickelt sich selbst zum Experten. Zudem können seine Vorhersageergebnisse auch zum Entschlüsseln weiterer Temperaturanomalien dienen.

Bild: infoteam Software AG

Natural Language Processing

Das selbstlernende KI-Modell nutzt Methoden aus dem Natural Language Processing (NLP), also Computerlinguistik. Die Algorithmen sind in der Lage, natürliche Sprache zu verarbeiten und kontextbezogene Zusammenhänge zu verstehen. Im vorliegenden Anwendungsfall lernt ein neuronales Netz, die in eine ’sprachähnliche Form übersetzten‘ Betriebsdaten zu interpretieren. Da die Betriebsdaten teilweise längere Arbeitssequenzen beinhalten, eignen sich Long-Short-Term-Memory(LSTM)-Netzwerke, um damit die Ergebnisqualität zu verfeinern. Der Abgleich mit Betriebs- und Temperaturdaten fehlerfreier Geräte zeigte, dass das trainierte KI-Modell präzisere Vorhersagen treffen konnte als das manuell erstellte physikalische Modell.

Lockerungen früh erkennbar

Der Vergleich des tatsächlichen Temperaturverlaufs eines Geräts mit dem theoretischen Temperaturverlauf seines digitalen Zwillings ermöglicht es nun, signifikante Abweichungen von der Norm zu identifizieren. In der Folge weist der Vergleich zwischen der Temperaturvorhersage aus dem KI-Modell und den tatsächlich am Gerät gemessenen Daten nach: Nicht das Überschreiten eines festen temperaturbezogenen Schwellenwerts ist kennzeichnend für eine Lockerung der Schraubverbindungen, sondern ein über mehrere Wochen langsam ansteigender Versatz der Temperaturtrajektorien, also des Temperaturverlaufes. Diese Erkenntnis verlängert den zeitlichen Handlungsspielraum gegenüber der vom Gerätehersteller ursprünglich gewünschten Lösung um mehrere Wochen, in denen der schleichende Lockerungsprozess bereits sichtbar und behebbar ist. Um in der Praxis dem nachgewiesenen individuellen Verhalten jedes einzelnen Geräts gerecht zu werden, implementiert der Softwaredienstleister einen Automatisierungsprozess, der aus dem entwickelten KI-Basismodell ein individuelles Modell für jedes im Einsatz befindliche Gerät erstellt. Der Gerätehersteller ist seither in der Lage,

  • alle Geräte bezüglich auftretender Temperaturanomalien zu überwachen,
  • die Analysen über Dashboards zu visualisieren,
  • automatische Service-Tickets bei Temperaturanomalien zu erstellen,
  • die Geräte frühzeitig in geplanten Service-Einsätzen zu reparieren, ohne dass Schäden entstehen.
Autor:
Firma: Infoteam Software AG
www.infoteam.de
- Anzeige -

News

- Anzeige -

Weitere Beiträge

Das könnte Sie auch interessieren

Wie KI in der Krise Wirtschaftsleistung unterstützen kann

Künstliche Intelligenz hat einen großen Einfluss auf die Zeit in der Corona-Krise, aber auch nach der Krise ist sie sehr hilfreich. Claudia Bünte ist Expertin auf dem Gebiet der KI und Professorin für ‚International Business Administration‘ mit Schwerpunkt Marketing an der SRH in Berlin. 2016 gründete sie die Marketingberatung ‚Kaiserscholle – Center of Marketing Excellence‘ und berät Top-Manager in Kernfragen der Markenführung und des Marketings.

mehr lesen

Digitalisierung und künstliche Intelligenz optimieren Prozessanlagen

Digitalisierung und künstliche Intelligenz (KI) eröffnen auch in der Prozessautomatisierung Perspektiven für Einsparungen in allen Phasen des Lebenszyklus einer Anlage. Schon verfügbar ist ein digitales Feldgerät, das Festo Motion Terminal VTEM. Auch Dashboards von Festo visualisieren Anlagenzustände und selbst künstliche Intelligenz ist in der Prozessautomatisierung keine ferne Zukunftsmusik mehr.

mehr lesen

Künstliche Intelligenz gezielt in der Wertschöpfung einsetzen

Die Wettbewerbsfähigkeit deutscher produzierender Unternehmen hängt heute mehr denn je von der Fähig-keit ab, komplexen Herausforderungen wie volatilen Märkten effektiv zu begegnen. Insbesondere im industri-ellen Kontext ergeben sich durch eine stetig wachsende Datenverfügbarkeit sowie verbesserte Analysemög-lichkeiten erhebliche Potenziale: „Artificial Intelligence“ (AI), zu Deutsch „Künstliche Intelligenz“ (KI), ermög-licht die Verarbeitung großer Datenmengen und kann dabei helfen, Prognosen abzuleiten und die Entschei-dungsfindung zu erleichtern. Um diese Potenziale abrufen zu können, müssen Unternehmen befähigt wer-den, Künstliche Intelligenz in der Wertschöpfung gezielt einzusetzen.

mehr lesen

Quantensprung für die künstliche Intelligenz

Quantencomputer werden die künstliche Intelligenz und das Maschinelle Lernen tiefgreifend verändern und völlig neue Anwendungsmöglichkeiten erschließen. In einer Studie erläutern Experten der Fraunhofer-Allianz Big Data und künstliche Intelligenz gemeinsam mit wissenschaftlichen Partnern, wie Quantencomputer Verfahren des Maschinellen Lernens beschleunigen können und welche Potenziale ihr Einsatz in Industrie und Gesellschaft mit sich bringen wird. Die Studie stellt grundlegende Konzepte und Technologien des Quantencomputings vor, analysiert die aktuelle Forschungs- und Kompetenzlandschaft und zeigt Marktpotenziale auf.

mehr lesen

KI-Studie 2020: Das Fremdeln des Top-Managements mit KI

Künstliche Intelligenz ist eine wichtige Technologie, von der sich Unternehmen handfeste Wettbewerbsvorteile versprechen. Das ist das Ergebnis einer aktuellen Studie des IT-Dienstleisters Adesso unter Führungskräften. Konkrete Projekte haben allerdings bislang nur wenige Firmen umgesetzt. Besonders zurückhaltend zeigt sich bei dem Thema das Top-Management.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.