Bergbau mit Machine Learning optimiert
Um die Sicherheit, Produktivität und Kosten im Berg- und Tagebau zu verbessern, bietet der Baumaschinenhersteller Komatsu Mining seinen Kunden den IIoT-basierten Service Smart Solutions an. Mit dem Datendienst können die Betreiber die Leistung ihrer Maschinen auf Basis von Echtzeit-Daten und -Analysen optimieren. Dahinter arbeitet eine Engine auf der Basis von Machine Learning.

Bild: Cloudera

Viele führende Unternehmen der Bauindustrie greifen zur Verbesserung der operativen Prozesse auf Datenerfassung und -nutzung zurück. Mit seinem Dienst Smart Solutions hat Komatsu Mining eine Industrial Internet of Things-Anwendung (IIoT) aufgebaut, die Maschinenbetreibern im Berg- und Tagebau Informationen vermittelt, auf deren Grundlage sie ihre Produktivität und Abbaueffizienz optimieren können. Zu den überwachten Maschinen gehören Strebabbausysteme, elektrische Seilbagger, Streckenvortriebsmaschinen und Radlader. Ursprünglich hat das eigene Data Warehouse von Komatsu Mining diesen IIoT-Service unterstützt. Als die Nachfrage stieg und immer mehr Maschinen vernetzt wurden, suchte das Unternehmen nach einem neuen Ansatz. Anforderung war, künftig ein Datenvolumen von bis zu 30 Terabytes pro Monat verarbeiten zu können. „Unsere alte Umgebung war in ihren Möglichkeiten zur Skalierung und zum Wachstum begrenzt“, sagt Shawn Terry, Lead Architect der Smart Solutions.

Neun Monate Projektdauer

Innerhalb von neun Monaten schufen die Mitarbeiter von Komatsu Mining gemeinsam mit Spezialisten von Cloudera und Microsoft eine Cloud-basierte IIoT-Plattform, die globalen Serviceteams die nötige Skalierbarkeit, Leistung und Flexibilität zur Verfügung stellt. Mit einer einheitlichen Plattform für das Datenmanagement können die ‚Smart-Teams‘ jetzt Daten von den Baumaschinen der Marken P&H und Joy sowie von Dritthersteller-Ausrüstung mit speicherprogrammierbarer Steuerung einfacher auswerten, um einen systematischen Blick auf die Abläufe im Berg- und Tagebau zu erhalten. Data Scientists von Komatsu Mining können effizientere Machine-Learning-Modelle bauen und schneller bessere Erkenntnisse liefern, als das vorher möglich war.

Maschinen weltweit

Die Analyse-Plattform erfasst, speichert und verarbeitet eine große Menge verschiedener Daten von Baumaschinen. Diese werden auf der ganzen Welt betrieben, oft in entlegenen Gebieten und unter schwierigen Bedingungen. Die Daten beinhalten Zeitserien-Messgrößen – Maschinendruck, Temperaturen, Ströme und so weiter, Alarm- und Ereignisdaten sowie weitere Informationen von Drittparteisystemen. Eine einzige Maschine kann tausende Daten-Messgrößen haben und 30.000 bis 50.000 einzelne Einträge mit Zeitstempel pro Minute erzeugen. Geplant ist, zukünftig eine noch engere Integration von Systemen beim Kunden vor Ort und weiteren Datenquellen zu erreichen, um die Zusammenhänge beim Betrieb der Maschinen besser zu verstehen. Durch die deutlich erhöhte Leistung der Lösung müssen die Mitarbeter von Komatsu Mining Entscheidungen nicht mehr davon abhängig machen, was die Infrastruktur unterstützt, sondern können sich ganz auf die Anforderungen der eigenen Kunden konzentrieren. „Wir können jetzt inkrementell und kostengünstig skalieren und wachsen. Damit sind wir in der Lage, unsere Anwenderbasis auszubauen und schnellere und bessere Services zu liefern“, sagt Shawn Terry.

Seiten: 1 2 3Auf einer Seite lesen

Thematik: Technologie
Ausgabe:

Anzeige

Anzeige

Das könnte Sie auch Interessieren

Bild: Bitkom e.V.
Bild: Bitkom e.V.
Künstliche Intelligenz 
kommt voran

Künstliche Intelligenz kommt voran

Bild: Bitkom e.V. Künstliche Intelligenz gilt in der deutschen Wirtschaft als Zukunftstechnologie und immer mehr Unternehmen sehen die Technologie als eine Chance für das eigene Geschäft. Entsprechend steigt der Anteil derjenigen, die KI-Anwendungen einsetzen, jedes...

Bild: FedEx
Bild: FedEx
33Mio.USD für Plus One Robotics

33Mio.USD für Plus One Robotics

Bild: FedEx Plus One Robotics, Entwickler von Bildverarbeitungssoftware für Logistikroboter, hat eine Serie-B-Finanzierung in Höhe von 33 Millionen US-Dollar erhalten. Die Finanzierung unterstützt die weitere Expansion in den USA und Europa sowie die weitere...