Automatische Anomalieerkennung
Die Vorstufe zur Störungsprognose
Um Störungen durch den Einsatz von künstlicher Intelligenz (KI) prognostizieren zu können, werden historische Störungsdaten benötigt. Diese stehen häufig nicht, oder nicht in ausreichender Menge, zur Verfügung. Deshalb ist oftmals die automatisierte Erkennung von Anomalien die Vorstufe zur Störungsprognose. Welche Herausforderungen und Lösungsansätze es zur automatischen Anomalieerkennung durch KI gibt, beschreibt der folgende Beitrag.

Im Zusammenspiel von Herstellern und Betreibern von Anlagen und Maschinen stehen im Kontext der Industrie 4.0 Entwicklungen zunehmend Sensor-, Steuer- und Prozessdaten zur Verfügung. Viele Unternehmen sind derzeit noch in der Phase, diese zunächst über Condition Monitoring sichtbar und nutzbar zu machen. Damit verbessern sich aber auch zunehmend die Grundlagen, die OEE (Overall Equipment Effectiveness), die Effizienz sowie die mit dem Betrieb verbundenen Personalaufwände mit Hilfe von KI bzw. Machine Learning zu optimieren. Die Störungsprognose ist dabei nur ein Baustein, aber ein sehr wichtiger, um ungeplante Stillstände zu vermeiden.

Bild: AIM – Agile IT Management GmbH

Erste Herausforderung

Im Idealfall liegen definierte Meldungen wie etwa Warnungen oder Alarme vor, die als Trainingsdaten für Prognosemodelle genutzt werden können. Dafür müssen aber zuvor entsprechende Schwellwerte und Regeln definiert werden, welche zum einen bei komplexen Anlagen nicht immer sofort auf der Hand liegen und zum anderen bei dynamischen Verhaltensweisen z.B. durch verschiedene Fertigungsprogramme und weitere Einflussfaktoren auch veränderlich sein können bzw. müssen. Daher liegen solche Trainingsdaten nicht immer direkt vor beziehungsweise müssen Normalverhalten und Störungen zunächst sauber separiert werden, um Prognosemodelle nutzen zu können. Auch stellt sich die Frage, wie vieler ‘notwendige Störungen‘ es für das Training entsprechender Modelle bedarf. Die Anzahl ist aus betrieblicher Sicht idealerweise sehr gering, aber ohne hinreichende Beispiele kann auch eine KI nichts erkennen.

Zweite Herausforderung

Getrieben durch den Hype um Machine Learning dominieren in vielen Marketing-Aussagen und Blog-Beiträgen teilweise noch immer komplexe Modelle und Ansätze zur Anomalieerkennung. Diese sind aber für Ingenieure und Verantwortliche für den Betrieb oft nicht nachvollziehbar und können den Blick auf die grundlegenden Bedingungen und Mechanismen zur Anomalieerkennung vernebeln.

Dritte Herausforderung

Prototypische Lösungen, die in der Exploration und im Labor funktionieren, sind zwar häufig schon recht beeindruckend, aber echte Mehrwerte liefern diese nur, wenn sie nahtlos in produktive Umgebungen und Abläufe eingebettet werden.

Seiten: 1 2 3Auf einer Seite lesen

AIM - Agile IT Management GmbH
www.agile-im.de

Das könnte Sie auch Interessieren

Bild: IFS Deutschland GmbH & Co. KGBild:©Tierney/stock.adobe.comBild: acatech - Dt. Akademie der TechnikwissenschaftenBild: IFS Deutschland GmbH & Co. KGBild: Zentrum für Europäische WirtschaftsforschungBild: ©branex/fotolia.com
Bild: IFS Deutschland GmbH & Co. KGBild:©Tierney/stock.adobe.comBild: acatech - Dt. Akademie der TechnikwissenschaftenBild: IFS Deutschland GmbH & Co. KGBild: Zentrum für Europäische WirtschaftsforschungBild: ©branex/fotolia.com
Erfolgsfaktor künstliche Intelligenz – immer mehr Maschinenbauer und Startups finden zusammen

Erfolgsfaktor künstliche Intelligenz – immer mehr Maschinenbauer und Startups finden zusammen

Bild: IFS Deutschland GmbH & Co. KGBild:©Tierney/stock.adobe.comBild: acatech - Dt. Akademie der TechnikwissenschaftenBild: IFS Deutschland GmbH & Co. KGBild: Zentrum für Europäische WirtschaftsforschungBild: ©branex/fotolia.com Aus der Analyse ergibt sich...