- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: min
Statusreport ‚Maschinelles Lernen‘

Nov 26, 2019 | Newsarchiv

Statusreport ‚Maschinelles Lernen‘

Bild: MVTec Software GmbH

Die industrielle Bildverarbeitung (BV) in Deutschland blickt auf ein jahrzehntelanges Wachstum mit zuletzt 2,8Mrd.€ Umsatz im Jahr 2018 zurück. Immer häufiger besteht in der Industrie der Bedarf, die erzeugten Bilddaten automatisiert zu bewerten, sei es zur Prozess- und Qualitätskontrolle oder in der medizinischen Diagnostik. Mit dem neuen Statusreport ‚Maschinelles Lernen – Künstliche Intelligenz mit neuronalen Netzen in optischen Mess- und Prüfsystemen‘ will der VDI in das maschinelle Lernen für optische Mess- und Prüfsysteme einführen und die Potenziale des maschinellen Lernens vorstellen.


Die derzeitigen Technologietreiber für das maschinelle Lernen (ML) im Bereich der Bildverarbeitung sind vor allem die Automobiltechnik, die Kommunikations- und Unterhaltungselektronik (Smartphones), die Medizin sowie der Bereich der öffentlichen Sicherheit. Das maschinelle Lernen zeigt dabei Stärken in klassischen Bildverarbeitungsaufgaben wie Segmentierung, Objekterkennung und Klassifikation. KI-Lösungen mit neuronalen Netzten eignen sich insbesondere für Aufgaben, für die sich weniger leicht Regeln angeben lassen, wie die Erkennung von Anomalien (in Bildern oder Zeitreihen) sowie bei der Fusion oder Korrelation von verschiedenen Datenströmen.

Zentrales Forschungsfeld in der BV ist die Erklärbarkeit der Ergebnisse des ML. Häufig kann die Frage ‚Warum hat das System so entschieden?‘ noch nicht beantwortet werden, da viele Verfahren des ML keine Kennzahlen für die Zuverlässigkeit ihrer Ergebnisse liefern. Allerdings ist genau das die notwendige Voraussetzung, um die Akzeptanz bei Anwendern sicherzustellen – z.B. bei der Abnahme von Projektergebnissen, bei Zertifizierungen von Verfahren oder bei der Erstellung von Diagnosen in der Medizin. Es braucht geeignete Kennzahlen, die die Qualität des Ergebnisses einschätzen. Sie sind insbesondere dann wichtig, wenn aus einem Ergebnis sicherheitsrelevante Entscheidungen abgeleitet werden sollen. Die Publikation zeigt den momentanen Stand und versucht, künftige Entwicklungen abzuschätzen.

Universitäten, Forschungseinrichtungen und Industrieunternehmen bringen die Nutzung des ML und der KI mit viel Engagement voran. Insbesondere hinsichtlich der Datennutzung müssen allerdings geeignete Rahmenbedingungen geschaffen werden: Große Datenmengen müssen zuverlässig gesichert, zwischen Projektpartnern ausgetauscht und vor unberechtigtem Zugriff gesichert werden können. Die Verfügbarkeit von industriellen Daten und die Freiheit zur Nutzung der Daten werden in naher Zukunft eine wesentliche Grundlage der wirtschaftlichen Souveränität eines Wirtschaftsraums bilden. Notwendig sind daher klare Regelungen, welche Eigentums- oder Nutzungsrechte an solchen Daten bestehen, wo die Grenzen individueller Rechte an Daten liegen und welche Rechte an den Ergebnissen von Lernverfahren für KI und ML bestehen. Diese Regelungen müssen in einem europäischen Rahmen vereinbart sein.

Der vollständige Statusreport ‚Maschinelles Lernen – Künstliche Intelligenz mit neuronalen Netzen in optischen Mess- und Prüfsystemen‘ steht kostenfrei unter www.vdi.de/publikationen.

Autor:
Firma:

News

Weitere Beiträge

Das könnte Sie auch interessieren

KI-Vorreiter führen ihre KI-Initiativen trotz Corona unbeirrt fort

Unternehmen, die beim Thema künstliche Intelligenz (KI) führend sind, zeigen sich von der Corona-Pandemie unbeeindruckt: 78 Prozent der KI-Vorreiter unter den Unternehmen führen ihre KI-Initiativen wie vor der Pandemie fort, 21 Prozent haben deren Umsetzung sogar beschleunigt. Unter den Unternehmen, die KI noch nicht skalierbar einsetzen, fahren hingegen 43 Prozent ihrer Investitionen zurück und 16 Prozent haben ihre KI-Initiativen eingestellt. In Deutschland haben 44 Prozent der Unternehmen keine Änderungen vorgenommen, 8 Prozent die Geschwindigkeit erhöht und 19 Prozent ihre Initiativen aufgrund der unsicheren Lage eingestellt. Weiterhin verzeichnen Unternehmen mit skalierbaren KI-Anwendungen messbare Erfolge bei der Absatzsteigerung und der Reduzierung von Sicherheitsrisiken und Kundenbeschwerden. Zu diesen und weiteren Ergebnissen kommt die Studie ‚The AI Powered Enterprise: Unlocking the potential of AI at scale‘, für die 950 Unternehmen aus elf Ländern und elf Branchen befragt wurden.

mehr lesen

KI übernimmt Arbeit von Software-Ingenieuren

Für selbstadaptive Software gibt es heute unzählige Anwendungsmöglichkeiten. Doch die Entwicklung der Systeme stellt Software-Ingenieure vor neue Herausforderungen. Wissenschaftler vom Softwaretechnik-Institut Paluno an der Universität Duisburg-Essen (UDE) haben jetzt vielversprechende Ergebnisse mit neuartigen Verfahren der künstlichen Intelligenz (KI) erzielt, die den Entwicklungsprozess selbstadaptiver Systeme automatisieren.

mehr lesen

Wie wird künstliche Intelligenz zum Standardwerkzeug für den Mittelstand?

Das Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU möchte zusammen mit den produzierenden Unternehmen des Mittelstands die entscheidende Barriere für die Anwendung künstlicher Intelligenz überwinden: Die Köpfe sind überzeugt, aber die Umgestaltung der Produktionsanlagen und -prozesse in den Fabriken stockt. Deshalb arbeiten die Forscherinnen und Forscher an einem systematischen Leitfaden, mit dem KI zum Standardwerkzeug werden soll, das bessere Produkte mit geringerem Ressourceneinsatz ermöglicht. Erste Ergebnisse sind vielversprechend.

mehr lesen

Leistungsstarkes KI-System am KIT installiert

Als ein Werkzeug der Spitzenforschung ist künstliche Intelligenz (KI) heute unentbehrlich. Für einen erfolgreichen Einsatz – ob in der Energieforschung oder bei der Entwicklung neuer Materialien – wird dabei neben den Algorithmen zunehmend auch spezialisierte Hardware zu einem immer wichtigeren Faktor. Das Karlsruher Institut für Technologie (KIT) hat nun als erster Standort in Europa das neuartige KI-System NVIDIA DGX A100 in Betrieb genommen. Angeschafft wurde es aus Mitteln der Helmholtz Artificial Intelligence Cooperation Unit (HAICU).

mehr lesen

Machine Learning einfach gemacht

Seit einigen Jahren schon werden die Fantasien der Ingenieure und Anlagenbauer beflügelt durch die Möglichkeiten von KI- und Machine-Learning-Algorithmen. Klingt zwar zunächst sehr kompliziert, bietet aber konkrete Vorteile für die smarte Fabrik. Maschinen und Anlagen bzw. Produktionsprozesse erzeugen kontinuierlich Daten. Erfolgreich werden zukünftig Unternehmen sein, denen es gelingt, Mehrwert aus diesen Daten zu generieren.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.