SBB setzt KI zur Verbesserung der Schienenwartung ein
Bild: SBB

Das ETH-Spin-Off LatticeFlow arbeitet mit der SBB, Siemens und der ETH zusammen, um eine sichere, effiziente und kostengünstige KI-basierte Bahnwartung zu ermöglichen.

Die Gleiswartung erfolgt traditionell durch eine manuelle Inspektion der Schienen, eine Aufgabe, die viel menschliche Arbeitskraft erfordert und nötig macht, dass Menschen in gefährlichen und manchmal schwer zugänglichen Umgebungen arbeiten. Die SBB beabsichtigen darum, die Schienenwartung zu verbessern, indem sie die Inspektionen mithilfe der neuesten Generation von KI automatisieren. Ein spezieller Zug, der mit Kameras ausgestattet ist, soll Bilddaten der Schienen sammeln, die dann von der KI verarbeitet werden, um eventuelle Schienenfehler zu identifizieren.

Die Streckeninspektion ist jedoch eine sicherheitskritische Aufgabe. Wie kann sichergestellt werden, dass das neue KI-basierte System zuverlässig ist? KI-Modelle funktionieren oft gut in Laborumgebungen, schneiden aber schlecht ab, wenn sie in der komplexen Realität eingesetzt werden. Bevor die SBB die Inspektionsaufgabe an die ‚Augen‘ des neuen KI-Systems übergibt, muss sie sicherstellen, dass die trainierten KI-Modelle Bahndefekte unter verschiedenen Umgebungsbedingungen korrekt erkennen. Linsenkratzer, Regentropfen oder Schnee auf den Schienen und andere Variablen, die die Bildqualität beeinflussen, dürfen die Zuverlässigkeit des KI-Systems nicht untergraben.

Mit diesem Ziel hat SBB eine Partnerschaft mit LatticeFlow, Forschern des AI Centers an der ETH und Siemens geschlossen. In einem ersten Schritt werden die Teams die Zuverlässigkeit der KI-Modelle der SBB mithilfe der LatticeFlow-Plattform für vertrauenswürdige KI bewerten. Die Modelle werden dann bei Bedarf verbessert. Parallel zur technischen Arbeit werden die Partner aktuelle Sicherheitsstandards und deren Anwendung auf den Bahnbereich analysieren. Das Ziel der Zusammenarbeit ist der Nachweis, dass die KI-Modelle zuverlässig sind und sicher in der Produktion eingesetzt werden können.

Thematik: Newsarchiv
| News
LatticeFlow AG
www.atticeflow.ai

Anzeige

Anzeige

Das könnte Sie auch Interessieren

Bild: Abat AG
Bild: Abat AG
Forschungskooperation verlängert

Forschungskooperation verlängert

Bild: Abat AG Voneinander und miteinander lernen, gemeinsam an innovativen Ideen für den Markt innerhalb von Forschungskooperationen tätig sein - seit mehreren Jahren schon besteht eine enge Zusammenarbeit zwischen der Bremer Abat AG und der Uni Oldenburg (Abteilung...

Image: Xilinx Inc.
Image: Xilinx Inc.
Adaptive AI Vision

Adaptive AI Vision

Image: Xilinx Inc. Die Kria SOMs ermöglichen den schnellen Einsatz durch Bereitstellung einer End-to-End Lösung auf Board-Ebene mit vorkonfiguriertem Software Stack. Das Kria K26 SOM basiert auf der Zynq UltraScale+ MPSoC Architektur, die einen Quad-Core Arm Cortex...