Forschungsprojekt Flairop
Kommissionierroboter intelligenter machen
Wo Güter hergestellt, gelagert, sortiert oder verpackt werden, wird auch kommissioniert: einzelne Waren werden Kisten oder Kartons entnommen und neu zusammengestellt. Im Rahmen des Forschungsprojekts Flairop wird daran gearbeitet, Kommissionierroboter mit verteilten KI-Methoden intelligenter zu machen.
Bild: Amadeus Bramsiepe, KIT

„Wir untersuchen, wie möglichst vielseitige Trainingsdaten von mehreren Standorten genutzt werden können, um mit Hilfe von Algorithmen im Bereich der Künstlichen Intelligenz (KI) robustere und effizientere Lösungen zu entwickeln als mit Daten von lediglich einem Roboter“, sagt Jonathan Auberle vom Institut für Fördertechnik und Logistiksysteme (IFL) des KIT. Im Projekt Flairop (Federated Learning for Robot Picking ) wird an mehreren Kommissionierstationen ein Artikel von Robotern mittels Greifen und Umsetzen weiterverarbeitet. An den verschiedenen Stationen werden die Roboter mit unterschiedlichen Artikeln trainiert. Am Ende sollen sie in der Lage sein, auch Artikel anderer Stationen zu greifen, die sie vorher noch nicht kennengelernt haben. „Durch den Ansatz des verteilten Lernens, auch Federated Learning genannt, schaffen wir den Spagat zwischen Datenvielfalt und Datensicherheit im industriellen Umfeld“, so Auberle.

Neue Algorithmen

„Bisher wurde Federated Learning überwiegend im medizinischen Sektor zur Bildanalyse eingesetzt, wo der Schutz von Patientendaten natürlich einen besonders hohen Stellenwert hat“, erläutert Auberle. Folglich gebe es für das Training des künstlichen neuronalen Netzes keinen Austausch von Trainingsdaten wie Bildern oder Greifpunkten, sondern es würden lediglich die lokalen Gewichte des Neuronalen Netzes, also Teile von gespeichertem Wissen, zu einem zentralen Server übertragen. „Dort werden die Gewichte von allen Stationen gesammelt und mit Hilfe verschiedener Kriterien optimiert. Anschließend wird die verbesserte Version zurück auf die lokalen Stationen gespielt, und der Prozess wiederholt sich.“ Ziel ist die Entwicklung von neuen leistungsstärkeren Algorithmen für den robusten Einsatz von Künstlicher Intelligenz für die Industrie und Logistik 4.0 unter Einhaltung der Datenschutzrichtlinien.

Vier Stationen

Insgesamt werden vier Kommissionierstationen aufgebaut: zwei am Institut für Fördertechnik und Logistiksysteme des KIT sowie zwei bei der Firma Festo in Esslingen. Weitere Partner sind das Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB) des KIT, Darwin AI und die University of Waterloo.

Das Projekt Flairop ist eine Partnerschaft zwischen kanadischen und deutschen Organisationen. Die kanadischen Projektpartner konzentrieren sich auf Objekterkennung durch Deep Learning, Explainable AI und Optimierung, während die deutschen Partner ihre Expertise in der Robotik, beim autonomen Greifen durch Deep Learning und in der Datensicherheit einbringen.

Thematik: Newsarchiv
| News
Festo SE & Co. KG
http://www.festo.com

Anzeige

Das könnte Sie auch Interessieren

Bild: ©sebra_AdobeStock
Bild: ©sebra_AdobeStock
Von Self Service bis Chatbot

Von Self Service bis Chatbot

Self-Service-Technologie, digitale Assistenten, künstliche Intelligenz – die Digitalwerkzeuge fürs Kundenbeziehungsmanagement werden immer ausgefeilter. Sind CRM- und ERP-System gut integriert, lassen sich im Sinn des xRM-Ansatzes auch leicht die Beziehungen zu Geschäftspartnern IT-gestützt pflegen.