- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: 4min
intelligente Prozessüberwachung mit direkter Signalverarbeitung

Apr 20, 2020 | Newsarchiv

Das Bundesministerium für Bildung und Forschung (BMBF) investiert aktiv in die Entwicklung neuer Elektroniksysteme und fördert dabei Verbundforschungsprojekte, die signifikant zur Umsetzung des Zukunftsprojekts Industrie 4.0 beitragen. Ziel des vom BMBF geförderten Gesamtprojekts KI-Predict ist die Nutzung von Methoden der künstlichen Intelligenz (KI) auf unterschiedlichen Ebenen des Produktionsprozesses als Basis für die zustandsbasierte, prädiktive Wartung von Produktionsanlagen und die Überwachung der Produktqualität direkt im Produktionsprozess. An diesem Projekt sind insgesamt sieben Partner beteiligt: unter ihnen das Fraunhofer-Institut für Integrierte Schaltungen IIS mit der Entwicklung eines Sensor-Interface ASICs. Das Besondere daran: Es ist auf Sensoren für Condition-Monitoring und Echtzeit-Prozesskontrolle abgestimmt und ermöglicht eine energieeffiziente Feature-Extraction und Signalverarbeitung direkt am Sensor.

Mikroelektronik, kombiniert mit Sensorik und eingebetteter Software, erfasst und verarbeitet Prozessdaten in Industrieanlagen. Dies ermöglicht die Digitalisierung von Produktionsprozessen und Betriebsabläufen in der Industrie 4.0. Heute verfügbare Elektroniksysteme zur Datenerfassung und Signalverarbeitung, insbesondere Signalprozessoren (DSP) oder programmierbare Logik (FPGA), sind jedoch für diesen Anwendungsbereich nicht optimiert und folglich im Vergleich zu den zu überwachenden Komponenten teuer.

Das Projekt KI-Predict adressiert genau dieses Problem in einem ganzheitlichen Ansatz. Die Kombination neuer KI-Methoden mit dazu optimierter, integrierter Hardware ermöglicht eine intelligente Prozessüberwachung mit direkter Signalverarbeitung und Feature-Extraktion am Ort des Geschehens. Diese neue Qualität der Datenverarbeitung direkt am Sensor ermöglicht eine sichere, dezentrale Analyse- und Prognosefähigkeit mit gleichzeitig definierter und geringer Latenz. Hierzu wird eine miteinander verzahnte Hard- und Softwarearchitektur entwickelt, die zum einen den Fokus auf sensornahe Datenfusion, Datenreduktion und Datenauswertung legt und zum anderen fehlerhafte Sensoren durch das Interpretieren von Anomalien erkennt. So werden z.B. neben üblichen Funktionen, wie etwa der digitalen Erfassung von Strom, Position, Vibration, Akustik, Druck, Kraft und Temperatur, vor allem Funktionalitäten für maschinelles Lernen (ML) bereitgestellt, wodurch eine dezentrale Datenverarbeitung und -reduktion ermöglicht wird.

Das Interface ist insbesondere in der Lage, energieeffizient Merkmale auch in hochfrequenten Sensorsignalen zu erkennen und diese entweder auf Steuerungsebene als Basis für die Sensordatenfusion zur Verfügung zu stellen oder direkt für die Klassifikation, das Clustering oder die Anomaliedetektion zu nutzen.

Die Nutzung von industriell üblichen Schnittstellen und Netzwerken wird durch die sensornahe Gewinnung aggregierter Merkmale aus dem Datenstrom ermöglicht. Dadurch können die Industriepartner den Funktionsumfang ihrer Anlagen, ohne zusätzliche Infrastrukturkosten, erhöhen. Gleichzeitig können diese Merkmale auf höheren Ebenen der Prozesssteuerung bzw. der ERP-Software mittels komplexeren KI- und ML-Methoden genutzt werden, um den Anlagenzustand und die Produktqualität zu erfassen sowie Trends zu verfolgen. Diese erweiterte Datenauswertung kann genutzt werden, um die Betriebskosten der Anlage zu senken. Hierbei ist die Hardware nicht an spezielle Anwendungsfälle angepasst und kann somit automatisiert an neue Anwendungsfälle angelernt werden.

Autor:
Firma: Fraunhofer-Institut IIS
www.iis.fhg.de

News

Weitere Beiträge

Das könnte Sie auch interessieren

KI-Vorreiter führen ihre KI-Initiativen trotz Corona unbeirrt fort

Unternehmen, die beim Thema künstliche Intelligenz (KI) führend sind, zeigen sich von der Corona-Pandemie unbeeindruckt: 78 Prozent der KI-Vorreiter unter den Unternehmen führen ihre KI-Initiativen wie vor der Pandemie fort, 21 Prozent haben deren Umsetzung sogar beschleunigt. Unter den Unternehmen, die KI noch nicht skalierbar einsetzen, fahren hingegen 43 Prozent ihrer Investitionen zurück und 16 Prozent haben ihre KI-Initiativen eingestellt. In Deutschland haben 44 Prozent der Unternehmen keine Änderungen vorgenommen, 8 Prozent die Geschwindigkeit erhöht und 19 Prozent ihre Initiativen aufgrund der unsicheren Lage eingestellt. Weiterhin verzeichnen Unternehmen mit skalierbaren KI-Anwendungen messbare Erfolge bei der Absatzsteigerung und der Reduzierung von Sicherheitsrisiken und Kundenbeschwerden. Zu diesen und weiteren Ergebnissen kommt die Studie ‚The AI Powered Enterprise: Unlocking the potential of AI at scale‘, für die 950 Unternehmen aus elf Ländern und elf Branchen befragt wurden.

mehr lesen

KI übernimmt Arbeit von Software-Ingenieuren

Für selbstadaptive Software gibt es heute unzählige Anwendungsmöglichkeiten. Doch die Entwicklung der Systeme stellt Software-Ingenieure vor neue Herausforderungen. Wissenschaftler vom Softwaretechnik-Institut Paluno an der Universität Duisburg-Essen (UDE) haben jetzt vielversprechende Ergebnisse mit neuartigen Verfahren der künstlichen Intelligenz (KI) erzielt, die den Entwicklungsprozess selbstadaptiver Systeme automatisieren.

mehr lesen

Wie wird künstliche Intelligenz zum Standardwerkzeug für den Mittelstand?

Das Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU möchte zusammen mit den produzierenden Unternehmen des Mittelstands die entscheidende Barriere für die Anwendung künstlicher Intelligenz überwinden: Die Köpfe sind überzeugt, aber die Umgestaltung der Produktionsanlagen und -prozesse in den Fabriken stockt. Deshalb arbeiten die Forscherinnen und Forscher an einem systematischen Leitfaden, mit dem KI zum Standardwerkzeug werden soll, das bessere Produkte mit geringerem Ressourceneinsatz ermöglicht. Erste Ergebnisse sind vielversprechend.

mehr lesen

Leistungsstarkes KI-System am KIT installiert

Als ein Werkzeug der Spitzenforschung ist künstliche Intelligenz (KI) heute unentbehrlich. Für einen erfolgreichen Einsatz – ob in der Energieforschung oder bei der Entwicklung neuer Materialien – wird dabei neben den Algorithmen zunehmend auch spezialisierte Hardware zu einem immer wichtigeren Faktor. Das Karlsruher Institut für Technologie (KIT) hat nun als erster Standort in Europa das neuartige KI-System NVIDIA DGX A100 in Betrieb genommen. Angeschafft wurde es aus Mitteln der Helmholtz Artificial Intelligence Cooperation Unit (HAICU).

mehr lesen

Machine Learning einfach gemacht

Seit einigen Jahren schon werden die Fantasien der Ingenieure und Anlagenbauer beflügelt durch die Möglichkeiten von KI- und Machine-Learning-Algorithmen. Klingt zwar zunächst sehr kompliziert, bietet aber konkrete Vorteile für die smarte Fabrik. Maschinen und Anlagen bzw. Produktionsprozesse erzeugen kontinuierlich Daten. Erfolgreich werden zukünftig Unternehmen sein, denen es gelingt, Mehrwert aus diesen Daten zu generieren.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.