KI-Forschungsarbeit von Bosch ausgezeichnet

KI-Forschungsarbeit von Bosch ausgezeichnet

Eine unter der Mitwirkung von Chief Scientist of AI Research Zico Kolter entstandene Forschungsarbeit hat den Outstanding New Directions Paper Award bei der 2019 Neural Information Processing Systems (NeurIPS) Conference erhalten. Kolter ist KI-Experte am BCAI-Standort in Pittsburgh, USA.

 (Bild: Bosch Center for Artificial Intelligence (BCAI))

(Bild: Bosch Center for Artificial Intelligence (BCAI))

Die NeurIPS Konferenz gilt als eine der bedeutendsten wissenschaftlichen Konferenzen zu maschinellem Lernen und neuronalen Datenverarbeitungssystemen weltweit und findet vom 8.–16. Dezember in Vancouver statt. Der Outstanding New Directions Paper Award wurde bei der diesjährigen Veranstaltung eingeführt. Laut NeurIPS wurde die Auszeichnung geschaffen, um Forschungsarbeiten hervorzuheben, die mögliche neue Techniken für die zukünftige Forschung zu künstlicher Intelligenz (KI) vorstellen. „Deep Learning ist wesentlicher Bestandteil zahlreicher KI-Anwendungen wie Computer Vision, Audioanalyse und automatisiertes Fahren“, erklärt Zico Kolter die Anregung für die Forschungsarbeit. „Trotz aller empirischen Erfolge von Deep Learning fehlt uns jedoch noch immer ein grundlegendes Verständnis davon, warum es so gut funktioniert. Diese Forschungsarbeit bietet eine Perspektive an und zeigt, dass ein von der KI-Gemeinschaft verwendeter gemeinsamer Ansatz möglicherweise nicht erklären kann, warum Deep Learning funktioniert.“

Die ausgezeichnete Arbeit mit dem Titel „Uniform convergence may be unable to explain generalization in deep learning“ wurde von Zico Kolter gemeinsam mit dem Doktoranden Vaishnavh Nagarajan von der Carnegie Mellon University verfasst, dessen Doktorarbeit durch ein Stipendium von Bosch gefördert wird. Die Forschungsarbeit hinterfragt bestimmte für die Analyse mehrschichtiger neuronaler Netzwerke verwendete Ansätze, für die möglicherweise Alternativlösungen erforderlich sind, um eine sichere, robuste und erklärbare KI sicherzustellen. Laut Zico Kolter sind die Erkenntnisse der Forschungsarbeit geeignet, unser Denken über die zentralen Methoden von Deep Learning zu verändern. Die Arbeite bietet zudem neue veranschaulichende Beispiele, die zu alternativen Techniken für maschinelles Lernen führen können.

Thematik: Newsarchiv
|

Anzeige

Anzeige

Das könnte Sie auch Interessieren

Bild: Abat AG
Bild: Abat AG
Forschungskooperation verlängert

Forschungskooperation verlängert

Bild: Abat AG Voneinander und miteinander lernen, gemeinsam an innovativen Ideen für den Markt innerhalb von Forschungskooperationen tätig sein - seit mehreren Jahren schon besteht eine enge Zusammenarbeit zwischen der Bremer Abat AG und der Uni Oldenburg (Abteilung...

Image: Xilinx Inc.
Image: Xilinx Inc.
Adaptive AI Vision

Adaptive AI Vision

Image: Xilinx Inc. Die Kria SOMs ermöglichen den schnellen Einsatz durch Bereitstellung einer End-to-End Lösung auf Board-Ebene mit vorkonfiguriertem Software Stack. Das Kria K26 SOM basiert auf der Zynq UltraScale+ MPSoC Architektur, die einen Quad-Core Arm Cortex...