- Anzeige -
- Anzeige -
Mehr Verlass auf Deep-Learning-Entscheidungen

Bild: DFKI GmbH, Foto: Lisa Jungmann

Wie lässt sich das Jonglieren besser erlernen: Durch Beobachten und Ausprobieren, oder durch das langwierige Planen der einzelnen Handbewegungen und Würfe? Dem Psychologen Daniel Kahneman zufolge verstecken sich darin die zwei Systeme, die das menschliche Denken bestimmen – das schnelle, emotionale und unbewusste Entscheiden, oder das langsame, logische und berechnende. Obwohl Computer weit davon entfernt sind, das menschliche Denkvermögen in seiner Komplexität nachzuahmen, gibt es zwei vergleichbare Herangehensweisen, mithilfe derer eine künstliche Intelligenz Entscheidungen treffen kann. Während Deep-Learning-Verfahren zu schnellen, jedoch rational nicht begründbaren Ergebnissen führen, können durch formale Berechnungen nachvollziehbare und mathematisch korrekte Antworten erhalten werden – die allerdings mehr Zeit beanspruchen.

Beide Verfahren kombinieren

Im Projekt ‘Fast&Slow‘ untersuchen Wissenschaftler des DFKI, wie sich die beiden Methoden kombinieren lassen. Am Forschungsbereich Cyber-Physical Systems, geleitet von Prof. Dr. Rolf Drechsler, soll es einer künstlichen Intelligenz ermöglicht werden, gleichzeitig schnelle wie auch verlässliche Entscheidungen zu treffen. Denn Deep-Learning-Verfahren alleine liefern lediglich subsymbolisch errechnete Lösungen, die auf Millionen von Parametern und Unmengen von Testbeispielen basieren. In vielen Anwendungsgebieten erfüllt dieses Vorgehen jedoch nicht die Ansprüche an Verlässlichkeit und Vertrauenswürdigkeit – beispielsweise im Bereich des autonomen Fahrens. Aus diesem Grund ist es notwendig, die Ergebnisse überprüfen und der KI die korrekten Ergebnisse antrainieren zu können.

Dazu sollen diese subsymbolischen Verfahren mit symbolischen kombiniert werden, um so die Vorteile beider nutzen zu können. Dafür ist es zunächst nötig, Problemstellungen zu definieren, die sowohl formal als auch durch Deep-Learning-Algorithmen lösbar sind – wie beispielsweise das Planen von Handlungsabläufen. Zunächst soll das formal korrekte Ergebnis trainiert werden, bevor das Problem durch das schnellere, subsymbolische Verfahren zu lösen versucht wird. Das Resultat kann im Nachhinein mit der symbolischen Methode überprüft und gegebenenfalls korrigiert werden.

Zwei Versuchsabläufe

In zwei Versuchsabläufen soll die Kombination der Verfahren getestet werden: Im ersten Versuch sollen sogenannte TurtleBots (kleine autonome Transportroboter, die unter anderem als Transporthilfen genutzt werden können) ihren sicheren Weg durch ein Smart Home finden. Im zweiten Versuch soll wiederum einem Pi4-Workerbot – ein Industrieroboter mit zwei Armen – das Jonglieren beigebracht werden. Ziel ist es, den Roboter sowohl alleine als auch zusammen mit einem Menschen jonglieren zu lassen, indem er die berechneten Bewegungsabläufe kennt und gleichzeitig durch Deep-Learning-Verfahren schnell über die nächste Armbewegung entscheiden kann.

Seiten: 1 2Auf einer Seite lesen

Thematik: Newsarchiv
|
- Anzeige -
- Anzeige -

Das könnte Sie auch Interessieren

Bild: ITQ GmbH
Bild: ITQ GmbH
Website Relaunch

Website Relaunch

Bild: ITQ GmbH Die ITQ GmbH hat ihre Website vollständig überarbeitet. Interessierte Kunden und Bewerber finden mit wenigen Klicks alle Informationen zu den Kernkompetenzen Software und Systems Engineering, Mechatronic Consulting sowie Digital Education. Alle Bereiche...

Bild: NET GmbH
Bild: NET GmbH
Roadshow von NET im April

Roadshow von NET im April

Bild: NET GmbH Die NET GmbH bietet vom 15. bis zum 22. April deutschlandweit Ein-Tages-Workshops an und gibt Einblicke in die Smart-Vision-Technologien der Firma. Vorgestellt werden Trends zu intelligenten Kameras (inkl. Programmierung), Künstliche Intelligenz und...