App-basierte Qualitätsvorhersage mit künstlichen neuronalen Netzen für KMU
Bild: WZL

Moderne Maschinensteuerungen liefern viele Daten über den ablaufenden Fertigungsprozess, aber erst die spezialisierte Auswertung der Daten ermöglicht einen tiefergehenden Einblick. Dadurch können nützliche Informationen und Optimierungspotenziale extrahiert und der Prüfaufwand reduziert werden. Die Produktqualität lässt sich dabei mit mathematischen Modellen aus den Prozessdaten, wie z.B. Drücken, Temperaturen oder Strömen, vorhersagen. Diese Modelle von Hand zu erstellen ist nicht nur zeitintensiv, sondern erfordert ebenso umfassendes Expertenwissen über den Fertigungsprozess.

Neue Entwicklungen im Bereich Data Science machen es jetzt möglich, diese Modelle aus den Prozessdaten automatisiert zu ermitteln. Hierfür werden Machine-Learning-Verfahren wie neuronale Netze eingesetzt. Neuronale Netze lernen aus der Datenbasis und können anschließend für die Vorhersage der Produktqualität und zur Fehler-Ursachen-Analyse eingesetzt werden. In kleinen und mittleren Unternehmen (KMU) fehlen jedoch oft das erforderliche Wissen und die notwendigen Ressourcen, um Machine-Learning-Verfahren erfolgreich einzusetzen. Ihnen bleiben deshalb große Potenziale zur Prozessverbesserung und Fehlerbehebung verwehrt.

Um diese Lücke künftig zu schließen, startete am Werkzeugmaschinenlabor WZL der RWTH Aachen im Februar 2020 das auf zwei Jahre angesetzte Projekt oraKel in Kooperation mit Unternehmen aus unterschiedlichen Branchen. Im Rahmen des Projektes wird sich der Lehrstuhl für Fertigungsmesstechnik und Qualitätsmanagement unter der Leitung von Prof. Robert H. Schmitt der Entwicklung von auf neuronalen Netzen basierenden Algorithmen zur automatisierten Qualitätsvorhersage und Fehler-Ursachen-Analyse in der Produktion widmen. Ziel ist die Reduktion von Prüfaufwand und der Aufbau von Prozesswissen.

Das Projekt oraKel wird durch die AiF und den FQS Forschungsgemeinschaft Qualität e. V. gefördert. Bei der Erforschung der Algorithmen sowie der Entwicklung der App wird der Lehrstuhl für Fertigungsmesstechnik und Qualitätsmanagement von einem projektbegleitenden Ausschuss aus Industriepartnern unterstützt, die im Bereich der Beratung, der Bereitstellung von CAQ-Software sowie der Produktion tätig sind. Hierunter fallen: IconPro GmbH, GFE – Gesellschaft für Fertigungstechnik und Entwicklung Schmalkalden e.V., Siemens AG, CemeCon AG, Q-Das GmbH, Bayer AG, iqs Software GmbH, Sanofi Aventis Deutschland GmbH, Risse & Co. GmbH, Transfact GmbH, Cerobear GmbH, Lauscher Präzisionstechnik GmbH, gbo Datacomp GmbH, Qsee Ltd. und CemeCon GmbH.

Thematik: Newsarchiv
| News
RWTH Aachen University Werkzeugmaschinenlabor WZL der
www.wzl.rwth-aachen.de

Anzeige

Anzeige

Das könnte Sie auch Interessieren

Bild: Bitkom e.V.
Bild: Bitkom e.V.
Künstliche Intelligenz 
kommt voran

Künstliche Intelligenz kommt voran

Bild: Bitkom e.V. Künstliche Intelligenz gilt in der deutschen Wirtschaft als Zukunftstechnologie und immer mehr Unternehmen sehen die Technologie als eine Chance für das eigene Geschäft. Entsprechend steigt der Anteil derjenigen, die KI-Anwendungen einsetzen, jedes...

Bild: FedEx
Bild: FedEx
33Mio.USD für Plus One Robotics

33Mio.USD für Plus One Robotics

Bild: FedEx Plus One Robotics, Entwickler von Bildverarbeitungssoftware für Logistikroboter, hat eine Serie-B-Finanzierung in Höhe von 33 Millionen US-Dollar erhalten. Die Finanzierung unterstützt die weitere Expansion in den USA und Europa sowie die weitere...