- Anzeige -
- Anzeige -
Lesedauer: 11min
„Wir müssen den Maschinen Meta-Regeln mitgeben“

Sep 25, 2020 | Künstliche Intelligenz

KI-basierte Systeme und Maschinen werden immer autonomer, selbstständiger und intelligenter. Ob und wie ist es zu schaffen, dass sie auf Dauer menschlichen Werten und Regeln folgen? Dr. Kurt D. Bettenhausen, Vorsitzender des interdisziplinären Gremiums Digitale Transformation im VDI und Vorstandsmitglied der VDI/VDE-GMA, spricht im zehnten Teil unserer Serie Autonome Systeme mit dem VDI.

Die Leistungsfähigkeit autonomer Systeme nimmt zu. Wie stellen Sie sicher, dass diese Systeme auf Dauer die geplanten Aufgaben übernehmen und nicht darüber hinausgehen, also beherrschbar bleiben?

Bild: ©Alexander Limbach/Fotolia.com

Dr. Kurt D. Bettenhausen: Lassen Sie uns für einen Moment von der Annahme ausgehen, dass die Leistungsfähigkeit tatsächlich in einen Bereich steigt, in dem autonome Systeme sich selbständig über ihren eigentlichen Bestimmungszweck hinaus weiterentwickeln können. Grundsätzlich bleiben drei Möglichkeiten: Dem Erbauer des autonomen Systems ethische Regeln für das Design der Systeme zu geben, das System selbst zu reglementieren oder dem System Regeln mitzugeben, die seine Weiterentwicklung lenken.

Welche dieser drei Möglichkeiten halten Sie langfristig für die wirksamste?

Bettenhausen: Solange wir über Systeme reden, die nicht KI-basiert sind, ist es vollkommen ausreichend, wenn die Personen, die sie konstruieren und programmieren, ethischen Werten folgen. Das System selbst reglementieren zu wollen, wird sich auf Dauer als Hase-und-Igel-Spiel entwickeln, bei dem die Regeln und die Regelnden mit hoher Wahrscheinlichkeit nicht mit dem technologischen Fortschritt werden mithalten können. In dem Moment jedoch, in dem das eigenständige Lernen eines Systems ins Spiel kommt, z.B. über Methoden wie Deep Learning, müssen wir uns über übergeordnete, sogenannte Meta-Regeln Gedanken machen. Und das müssen wir tun, bevor wir die Maschinen in unsere Umwelt lassen. Denken Sie beispielsweise nur an den Chatbot, der innerhalb eines einzigen Tages rassistische Propaganda verbreitete oder an die Chatbots, die in kürzester Zeit eine für Menschen unverständliche Sprache entwickelten. Wir dürfen nicht die Kontrolle verlieren und wir müssen den Maschinen zugleich Meta-Regeln mitgeben, die sie zwingend befolgen müssen.

Deep-Learning-Systeme können wir nicht mehr kontrollieren?

Bettenhausen: Zumindest können wir nicht zu jedem Zeitpunkt schnell genug vorhersagen, was genau sie lernen und gegebenenfalls in Echtzeit anwenden werden. Bei Maschinen, die aus der immer größer werdenden Menge an Daten Wissen und über deren Analyse Erkenntnisse ziehen, können wir nicht sagen, was sie in einem Jahr lernen werden. Sie tun dies selbstverständlich nur im vorgegebenen Bereich. Ein smarter Staubsauger wird, so intelligent er auch werden mag, morgen nicht Ihre Spülmaschine ausräumen. Aber bleiben wir bei diesem Beispiel: Wenn der intelligente Staubsauger erkennt, dass es besonders der Hund ist, der den größten Dreck verursacht, muss er einen effizienten Weg finden, Haare und Dreck schnell zu entfernen. Er darf nicht auf die Idee kommen, den Hund rauszuschmeißen und ihm den Eingang zu verwehren oder ihn vorsorglich komplett kahl zu scheren – oder eben Schlimmeres. Er braucht also übergeordnete Regeln. Als Ausgangsbasis können die bekannten Robotergesetze von Asimov herhalten. Gerade das zweite Gesetz, der Roboter muss den menschlichen Befehlen gehorchen, ist angesichts von Kriegen und Terroranschlägen wohl differenzierter zu betrachten. Aber sie sind ein erster Schritt und eben schon 75 Jahre alt.

Seiten: 1 2Auf einer Seite lesen

Autor:
Firma: VDI Verein Deutscher Ingenieure e.V.
www.vdi.de

News

- Anzeige -

Weitere Beiträge

Das könnte Sie auch interessieren

KI per Smartphone

Die KI-Software AI.See von Elunic wird häufig zur Prüfung von Oberflächen aus Metall und Kunststoff eingesetzt. Mit einem Starterkit und einem Smartphone können Anwender selbst einen ersten Eindruck einer KI-basierten Qualitätsprüfung gewinnen.

mehr lesen

Künstliche Intelligenz analysiert wertvolle Inhaltsstoffe

Kunststoffmüll ist ein Problem. Weltweit. Der Grund: Kunststoff ist meist verbaut und Teil eines komplexen Produktes: Auto, Kühlschrank, Lederschuh oder Smartphone. Materialanalyse, -trennung und Recycling wären ein Lösungsansatz. Hier setzt das Projekt ‚Digital Lifecycle Record for the Circular Economy‘ – kurz ReCircE – an. Es will mithilfe von künstlicher Intelligenz ein umfassendes Recyclingverfahren entwickeln. Teil des Projektes ist ein digitaler Produktpass. Er soll Transparenz über die gesamte Wertstoffkette schaffen, um die Verwertung von Kunststoffen aus hochentwickelten Produkten zu erleichtern.

mehr lesen

Unternehmen reagieren bei ethischen KI-Fragen zögerlich

Das Bewusstsein für ethische Fragestellungen beim Einsatz von künstlicher Intelligenz ist in Unternehmen und Verwaltungen gestiegen. Dennoch fällt ihre diesjährige Handlungsbilanz gemischt aus, da nur in Teilbereichen Verbesserungen erzielt wurden. Zu diesen und weiteren Erkenntnissen kommt eine Studie von Capgemin für die 2.900 Konsumenten sowie 900 Führungskräfte befragt wurden.

mehr lesen

Künstliche Intelligenz trifft Embedded

An künstlicher Intelligenz (KI) und maschinellem Lernen führt kein Weg vorbei. Die Automobilindustrie, die industrielle Automation, die Landwirtschaft – kaum ein Sektor, der nicht vor tiefgreifenden Veränderungen steht. Mit KI-fähigen Embedded-Systemen steht künstliche Intelligenz zunehmend direkt at the Edge zur Verfügung.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.