Wenn KI zum Produktdesigner wird
Beim generativen Design werden KI-Algorithmen zur treibenden Entscheidungskraft im Produktdesign. Anhand vorgegebener Parameter können sie eine Vielzahl an passenden Produktentwürfen berechnen. Dadurch ändert sich auch die Rolle von Produktdesignern und Ingenieuren. Ganz ohne sie geht es jedoch nicht.

 

Bild: PTC Inc.

Beim Konzept des von künstlicher Intelligenz (KI) gesteuerten generativen Designs in der Produktentwicklung handelt es sich nicht um eine bahnbrechende Innovation. Bereits vor einigen Jahren kam es zu einer Art erstem Hype rund um dieses Thema, allerdings gab es auf diesem Gebiet immer noch keinen rechten Durchbruch – zu groß war die Skepsis gegenüber KI-Algorithmen als treibende Entscheidungskraft im Produktdesign. Darüber hinaus war es für Anbieter von 3D-CAD-Technologie bisher schwierig, Ingenieure und Entwickler für den Einsatz von Simulationstechnik in einem frühen Konstruktionsprozess zu begeistern, da die technologischen Herausforderungen wie die mangelnde Geschwindigkeit der Anwendungen oft noch zu groß erschienen. Doch durch Cloudtechnologien sowie Fortschritten in den Bereichen Simulationstechnologie, dem 3D-Druck sowie beim Machine Learning als eine der KI-Technologien steht das Konzept des generativen Designs in der Produktentwicklung vor einer breiteren Anwendung im Markt. Dabei gilt es auch, die zukünftige Rolle des Produktentwicklers im Blick zu behalten.

Computer wird zur treibenden Kraft

Einfach ausgedrückt, bedeutet generatives Design, dass Menschen und Computer gemeinsam Objekte entwerfen, die ein Mensch alleine nicht zu entwickeln vermag. Während die Produktentwickler und Ingenieure bislang noch selbst aktiv und kreativ über ein neues Produkt, Bauteil oder eine größere Konstruktion wie eine Brücke oder ein Haus nachdachten und den Computer samt moderner CAD-Software als Hilfsmittel nutzten, wird beim generativen Design der Computer zur treibenden Kraft. Der Mensch legt zunächst Designparameter und Funktionsanforderungen wie etwa Maximalgröße (Bauraum), Gewicht, Werkstoffart, Belastbarkeit, Fertigungsprozess oder Kosten fest. Zudem ist es möglich, Designparameter zu definieren, die Kaufentscheidungen, Fertigungskapazitäten, den Status der Lieferkette und regional erforderliche Produktvarianten berücksichtigen. Der Computer errechnet daraufhin nicht nur eine Geometrie, sondern erstellt eine Vielzahl von Design-Entwürfen, die den vorgegebenen Kriterienkatalog in sämtliche Richtungen ausreizen. Die Simulation wird beim generativen Design somit in den Entwicklungsprozess integriert.

Hoher Personalisierungsgrad

Die Vorteile für die Unternehmen sind vielfältig. So kann beispielsweise mehr Zeit in die Erforschung konzeptioneller Designs fließen. Zudem kann die Entwicklung neuer Produkte optimiert werden, beispielsweise durch verbesserte Produzierbarkeit, die Reduktion von Materialkosten sowie kürzere Produktionszeiten. Der Ansatz des generativen Designs ermöglicht außerdem einen hohen Personalisierungsgrad, was dem Kunden zu Gute kommt. Da Simulation, Analyse und Fertigung auf einer Ebene liegen, sinkt die Gefahr möglicher teurer Nachbesserungen deutlich, was die Zeit bis zur Markteinführung stark verkürzen kann.

Seiten: 1 2 3Auf einer Seite lesen

Anzeige

Anzeige

Das könnte Sie auch Interessieren

Bild: Abat AG
Bild: Abat AG
Forschungskooperation verlängert

Forschungskooperation verlängert

Bild: Abat AG Voneinander und miteinander lernen, gemeinsam an innovativen Ideen für den Markt innerhalb von Forschungskooperationen tätig sein - seit mehreren Jahren schon besteht eine enge Zusammenarbeit zwischen der Bremer Abat AG und der Uni Oldenburg (Abteilung...

Image: Xilinx Inc.
Image: Xilinx Inc.
Adaptive AI Vision

Adaptive AI Vision

Image: Xilinx Inc. Die Kria SOMs ermöglichen den schnellen Einsatz durch Bereitstellung einer End-to-End Lösung auf Board-Ebene mit vorkonfiguriertem Software Stack. Das Kria K26 SOM basiert auf der Zynq UltraScale+ MPSoC Architektur, die einen Quad-Core Arm Cortex...