- Anzeige -
- Anzeige -
Zwischen Regelwerk und Selbstlernen

Field Service Management:

Zwischen Regelwerk und Selbstlernen

Bild: SAP SE

Nach einer Studie von Gartner soll bis 2022 der Geschäftswert von KI auf 2,85 Billionen Euro steigen. Der Löwenanteil davon wird voraussichtlich auf den Bereich der Kundenerfahrung entfallen, für das schon ausgereifte Tools am Markt existieren. Dieser Überblick zeigt, wie es heute um KI im Field Service Management steht und wohin die Reise geht.

Regelbasierte Systeme bilden einen der einfachsten Typen im KI-Segment. Allerdings weist ihre Charakteristik eine Reihe von Nachteilen auf. Beispielsweise stehen Programmierer vor der Notwendigkeit, aufwendige Regeln und Schwellenwerte zu definieren. Als besonders schwierig erweist es sich, wenn sich Daten innerhalb kürzester Zeit ändern. Der Grund: Diese Art von Systemen kann lediglich solche Fehler finden, die bereits bekannt sind – sie sind nicht dafür ausgelegt, unbekannte Anomalien aufzudecken. Grundsätzlich liefern regelbasierte Systeme, die auch als Expertensysteme bezeichnet werden, eine ausreichende Operationsbasis für die Verwaltung und Analyse selbst bei größeren Datensätzen. Das gilt jedoch nicht für komplexe Daten wie Bilder oder Videos. Hier gilt es dafür zu sorgen, dass die Datenpunkte auf eine Menge verringert werden, die sich effektiv verarbeiten lässt – mit dem Nebeneffekt, dass dann allerdings nicht mehr der ganze Bestand abgebildet wird.

Basis für selbstständiges Handeln

Sobald die Komplexität jener Abläufe in Produktion und Field Service zunimmt, in denen regelbasierte Ansätze zum Einsatz kommen, geraten diese aufgrund ihres Funktionsprinzips schnell an ihre Grenzen. Einen Gegenentwurf bilden KI-Ansätze, die auf maschinellem Lernen basieren. Hierbei wird ein System anhand großer Datenmengen trainiert: es erzeugt selbst die Regeln und ein Modell zum Klassifizieren der Trainingsdaten. Die Interpretation der zu bewertenden Daten erfolgt in Echtzeit. Eine weitere Besonderheit ist, dass diese Form von künstlicher Intelligenz in der Lage ist, Aktionen selbstständig auszulösen. Anhand ‚gesunder‘ Datenströme lernt sie Prozesse kennen und erkennt dann auch Anomalien, die gar keine definierten Schwellenwerte verletzen.

Voicebots und Chatbots

Beispiele für konkrete Anwendungsfälle, in denen beide KI-Ansätze – der regelbasierte und der lernende – beim Field Service Management zum Einsatz kommen, sind Voicebots und Chatbots. In einem regelbasierten System werden im Vorfeld Fragen und entsprechende Antwortmöglichkeiten definiert. Bei sämtlichen Fragen, die hierbei nicht berücksichtigt wurden, kann der Chatbot nicht behilflich sein. Regelbasierte Voicebots und Chatbots sind also für begrenzte Anwendungsbereiche nutzbar, solange sich die erforderlichen Daten nicht regelmäßig ändern. Einen flexibleren Einsatzbereich weisen KI-basierte Lösungen auf, die in der Lage sind, selbstständig zu lernen. Sie werden mit Datensätzen trainiert, erkennen Gesetzmäßigkeiten und leiten daraus weitere Antworten ab. Außerdem führt jede neue Spracheingabe dazu, dass diese weitertrainiert wird. Je nach Einsatzbereich sorgen Chatbots, denen eine regelbasierte oder eine lernende KI zugrunde liegt, für Entlastung im Service-Sektor. Sie erteilen einfache Auskünfte über Chatfenster und stellen Anwendern bei Bedarf technische Datenblätter oder Gebrauchsanweisungen bereit.

Seiten: 1 2Auf einer Seite lesen

- Anzeige -
- Anzeige -

Das könnte Sie auch Interessieren

Bild: Senswork GmbH
Bild: Senswork GmbH
10 Jahre Senswork

10 Jahre Senswork

Bild: Senswork GmbH Senswork hat in diesem Jahr gleich zwei Gründe zu feiern: Das Unternehmen eröffnet sein Innovation Lab in München mit dem Fokus auf Deep Learning und wird zehn Jahre alt. „Wir entwickeln Sehen für Maschinen und Roboter“, lautet der Leitsatz des...

Bild: IFW
Bild: IFW
Maschinen fehlerlos einfahren

Maschinen fehlerlos einfahren

Transfer von Wissen zwischen Maschinen für die Überwachung - Bild: IFW Durch die Auswertung von Prozessdaten aus Werkzeugmaschinen können Fehler etwa beim Einfahren früh erkannt werden. Durch die Digitalisierung der Fertigung stehen dafür immer größere Datenmengen zur...