- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: min
Zwischen Regelwerk und Selbstlernen

Dez 2, 2019 | Künstliche Intelligenz

Field Service Management:

Zwischen Regelwerk und Selbstlernen

Bild: SAP SE

Nach einer Studie von Gartner soll bis 2022 der Geschäftswert von KI auf 2,85 Billionen Euro steigen. Der Löwenanteil davon wird voraussichtlich auf den Bereich der Kundenerfahrung entfallen, für das schon ausgereifte Tools am Markt existieren. Dieser Überblick zeigt, wie es heute um KI im Field Service Management steht und wohin die Reise geht.

Regelbasierte Systeme bilden einen der einfachsten Typen im KI-Segment. Allerdings weist ihre Charakteristik eine Reihe von Nachteilen auf. Beispielsweise stehen Programmierer vor der Notwendigkeit, aufwendige Regeln und Schwellenwerte zu definieren. Als besonders schwierig erweist es sich, wenn sich Daten innerhalb kürzester Zeit ändern. Der Grund: Diese Art von Systemen kann lediglich solche Fehler finden, die bereits bekannt sind – sie sind nicht dafür ausgelegt, unbekannte Anomalien aufzudecken. Grundsätzlich liefern regelbasierte Systeme, die auch als Expertensysteme bezeichnet werden, eine ausreichende Operationsbasis für die Verwaltung und Analyse selbst bei größeren Datensätzen. Das gilt jedoch nicht für komplexe Daten wie Bilder oder Videos. Hier gilt es dafür zu sorgen, dass die Datenpunkte auf eine Menge verringert werden, die sich effektiv verarbeiten lässt – mit dem Nebeneffekt, dass dann allerdings nicht mehr der ganze Bestand abgebildet wird.

Basis für selbstständiges Handeln

Sobald die Komplexität jener Abläufe in Produktion und Field Service zunimmt, in denen regelbasierte Ansätze zum Einsatz kommen, geraten diese aufgrund ihres Funktionsprinzips schnell an ihre Grenzen. Einen Gegenentwurf bilden KI-Ansätze, die auf maschinellem Lernen basieren. Hierbei wird ein System anhand großer Datenmengen trainiert: es erzeugt selbst die Regeln und ein Modell zum Klassifizieren der Trainingsdaten. Die Interpretation der zu bewertenden Daten erfolgt in Echtzeit. Eine weitere Besonderheit ist, dass diese Form von künstlicher Intelligenz in der Lage ist, Aktionen selbstständig auszulösen. Anhand ‚gesunder‘ Datenströme lernt sie Prozesse kennen und erkennt dann auch Anomalien, die gar keine definierten Schwellenwerte verletzen.

Voicebots und Chatbots

Beispiele für konkrete Anwendungsfälle, in denen beide KI-Ansätze – der regelbasierte und der lernende – beim Field Service Management zum Einsatz kommen, sind Voicebots und Chatbots. In einem regelbasierten System werden im Vorfeld Fragen und entsprechende Antwortmöglichkeiten definiert. Bei sämtlichen Fragen, die hierbei nicht berücksichtigt wurden, kann der Chatbot nicht behilflich sein. Regelbasierte Voicebots und Chatbots sind also für begrenzte Anwendungsbereiche nutzbar, solange sich die erforderlichen Daten nicht regelmäßig ändern. Einen flexibleren Einsatzbereich weisen KI-basierte Lösungen auf, die in der Lage sind, selbstständig zu lernen. Sie werden mit Datensätzen trainiert, erkennen Gesetzmäßigkeiten und leiten daraus weitere Antworten ab. Außerdem führt jede neue Spracheingabe dazu, dass diese weitertrainiert wird. Je nach Einsatzbereich sorgen Chatbots, denen eine regelbasierte oder eine lernende KI zugrunde liegt, für Entlastung im Service-Sektor. Sie erteilen einfache Auskünfte über Chatfenster und stellen Anwendern bei Bedarf technische Datenblätter oder Gebrauchsanweisungen bereit.

Seiten: 1 2Auf einer Seite lesen

Autor:
Firma:

News

Weitere Beiträge

Das könnte Sie auch interessieren

ABB unterstützt betriebliche Optimierung mit Analyse- und KI-Software

Die ABB Ability Genix Industrial Analytics und AI Suite ist eine skalierbare Analyseplattform mit vorgefertigten, benutzerfreundlichen Anwendungen und Services. Damit werden Betriebs-, Engineering- und IT-Daten erfasst, kontextualisiert und in umsetzbare Informationen umgewandelt. So können industrielle Prozesse verbessert und das Management der Anlagen optimiert werden. Darüber hinaus können Geschäftsprozesse sicher und nachhaltig rationalisiert werden.

mehr lesen

KI-Vorreiter führen ihre KI-Initiativen trotz Corona unbeirrt fort

Unternehmen, die beim Thema künstliche Intelligenz (KI) führend sind, zeigen sich von der Corona-Pandemie unbeeindruckt: 78 Prozent der KI-Vorreiter unter den Unternehmen führen ihre KI-Initiativen wie vor der Pandemie fort, 21 Prozent haben deren Umsetzung sogar beschleunigt. Unter den Unternehmen, die KI noch nicht skalierbar einsetzen, fahren hingegen 43 Prozent ihrer Investitionen zurück und 16 Prozent haben ihre KI-Initiativen eingestellt. In Deutschland haben 44 Prozent der Unternehmen keine Änderungen vorgenommen, 8 Prozent die Geschwindigkeit erhöht und 19 Prozent ihre Initiativen aufgrund der unsicheren Lage eingestellt. Weiterhin verzeichnen Unternehmen mit skalierbaren KI-Anwendungen messbare Erfolge bei der Absatzsteigerung und der Reduzierung von Sicherheitsrisiken und Kundenbeschwerden. Zu diesen und weiteren Ergebnissen kommt die Studie ‚The AI Powered Enterprise: Unlocking the potential of AI at scale‘, für die 950 Unternehmen aus elf Ländern und elf Branchen befragt wurden.

mehr lesen

KI übernimmt Arbeit von Software-Ingenieuren

Für selbstadaptive Software gibt es heute unzählige Anwendungsmöglichkeiten. Doch die Entwicklung der Systeme stellt Software-Ingenieure vor neue Herausforderungen. Wissenschaftler vom Softwaretechnik-Institut Paluno an der Universität Duisburg-Essen (UDE) haben jetzt vielversprechende Ergebnisse mit neuartigen Verfahren der künstlichen Intelligenz (KI) erzielt, die den Entwicklungsprozess selbstadaptiver Systeme automatisieren.

mehr lesen

Wie wird künstliche Intelligenz zum Standardwerkzeug für den Mittelstand?

Das Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU möchte zusammen mit den produzierenden Unternehmen des Mittelstands die entscheidende Barriere für die Anwendung künstlicher Intelligenz überwinden: Die Köpfe sind überzeugt, aber die Umgestaltung der Produktionsanlagen und -prozesse in den Fabriken stockt. Deshalb arbeiten die Forscherinnen und Forscher an einem systematischen Leitfaden, mit dem KI zum Standardwerkzeug werden soll, das bessere Produkte mit geringerem Ressourceneinsatz ermöglicht. Erste Ergebnisse sind vielversprechend.

mehr lesen

Leistungsstarkes KI-System am KIT installiert

Als ein Werkzeug der Spitzenforschung ist künstliche Intelligenz (KI) heute unentbehrlich. Für einen erfolgreichen Einsatz – ob in der Energieforschung oder bei der Entwicklung neuer Materialien – wird dabei neben den Algorithmen zunehmend auch spezialisierte Hardware zu einem immer wichtigeren Faktor. Das Karlsruher Institut für Technologie (KIT) hat nun als erster Standort in Europa das neuartige KI-System NVIDIA DGX A100 in Betrieb genommen. Angeschafft wurde es aus Mitteln der Helmholtz Artificial Intelligence Cooperation Unit (HAICU).

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.