- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: 0min
Sensorintelligenz vor Ort
Bei Predictive Maintenance werden mit datenbasierten Prognosemethoden Servicearbeiten an einer Maschine relativ präzise geplant, um ungeplanten Anlagenstillstand vorzubeugen. Diese Lösungen arbeiten meist cloudbasiert, werden aber immer häufiger von Edge-Computern im Werk vor Ort unterstützt.

 

 

 

Bild: SSV Software Systems GmbH

Zahlreiche Angebote

Relativ neu sind Predictive-Maintenance-Lösungen auf Grundlage aktueller Zustandsdaten, die laufend gemessen und mit Hilfe entsprechender Software ausgewertet werden. Daraus sind zahlreiche ‚Predictive Maintenance-as-a-Service‘- Angebote oder ähnliche Services für Maschinenbauer und -betreiber entstanden. Die dabei in der Cloud laufende Software ist recht anspruchsvoll. Sie reicht von regelbasierten Expertensystemen über statistisches Lernen (z.B. stochastische Modelle mit Wahrscheinlichkeiten, wie das Hidden Markow Model, Supervised oder Unsupervised Machine Learning) bis hin zum Deep Learning mit neuronalen Netzen. Die Anwender müssen sich mit der Implementierung derartiger mathematischer Methoden nicht auskennen, das übernimmt der Cloud-Betreiber. Vom Anwender wird lediglich erwartet, dass er laufend Rohdaten aus der Steuerung und vor allem durch zusätzlich installierte Sensoren in die Cloud schickt und dass er für die Nutzung der Cloud-Dienste regelmäßig zahlt. Neben der Cloud etabliert sich allerdings auch noch die Edge als Umgebung für automatische Datenanalysen: Die Algorithmen laufen dann nicht irgendwo in der Cloud, sondern auf einer Hardware vor Ort.

Senor-to-Cloud-Konzepte

Die wohl meisten industriellen PM-Anwendungen nutzen Sensor-to-Cloud-Konzepte aus der IoT-Welt. Dabei werden Sensorrohdaten an eine Cloud-Serviceplattform im Internet übertragen, um dort mit Hilfe intelligenter Algorithmen bzw. künstlicher Intelligenz werthaltige Informationen zu gewinnen. Dabei entstehen jedoch auch Nachteile:

• Datenmengen- und Bandbreitenproblematik: Durch die unterschiedlichen Sensoren fallen große Datenmengen an – aus einer Sekunde Mikrofondaten eines Antriebselements entstehen bei einer Abtastrate von 14,4kHz insgesamt 14.400 Datenpunkte, die in die Cloud müssen. Dies erfordert eine breitbandige Internetanbindung. Bei einem in der Fläche nach wir vor sehr lückenhaften Mobilfunknetz ist nachvollziehbar, warum verschiedene Interessengruppen auf 5G warten.

  • • Verfügbarkeit von Cloud und Kommunikationsverbindung: Weder die Cloud, noch die Kommunikationsverbindung zwischen Sensor und Cloud, besitzen eine 100%-Verfügbarkeit. Insofern werden nicht alle Sensordaten in der Cloud ankommen. Zufällig auftretende Messwerte, die auf ein Lebensdauer-relevantes Ereignis schließen lassen (z.B. Spannungsspitzen, die Kondensatoren beschädigen), sollten für die Auswertung aber nicht verloren gehen. Ansonsten lassen sich bevorstehende Maschinen- bzw. Anlagenstillstände weniger sicher vorhersagen.
  • • Cloud-Provider-Abhängigkeit: Da sich die Serviceschnittstellen und Algorithmenimplementierung einzelner Anbieter zum Teil erheblich voneinander unterscheiden, entsteht durch die Anbindung der Sensoren einer Maschine oder Anlage eine große Abhängigkeit vom jeweiligen Cloud-Serviceprovider. Wird eine PM-Anwendung erfolgreich in der Praxis genutzt, ist ein späterer Wechsel zu einem anderen Provider nur noch mit sehr großem Aufwand möglich. Des Weiteren existieren keine Verfügbarkeitsgarantien für einzelne Services. Über einen Maschinenlebenszyklus von beispielsweise 15 Jahren sind auch hier Abhängigkeitsprobleme zu erwarten.

Seiten: 1 2Auf einer Seite lesen

Autor:
Firma:

News

Weitere Beiträge

Das könnte Sie auch interessieren

KI-Vorreiter führen ihre KI-Initiativen trotz Corona unbeirrt fort

Unternehmen, die beim Thema künstliche Intelligenz (KI) führend sind, zeigen sich von der Corona-Pandemie unbeeindruckt: 78 Prozent der KI-Vorreiter unter den Unternehmen führen ihre KI-Initiativen wie vor der Pandemie fort, 21 Prozent haben deren Umsetzung sogar beschleunigt. Unter den Unternehmen, die KI noch nicht skalierbar einsetzen, fahren hingegen 43 Prozent ihrer Investitionen zurück und 16 Prozent haben ihre KI-Initiativen eingestellt. In Deutschland haben 44 Prozent der Unternehmen keine Änderungen vorgenommen, 8 Prozent die Geschwindigkeit erhöht und 19 Prozent ihre Initiativen aufgrund der unsicheren Lage eingestellt. Weiterhin verzeichnen Unternehmen mit skalierbaren KI-Anwendungen messbare Erfolge bei der Absatzsteigerung und der Reduzierung von Sicherheitsrisiken und Kundenbeschwerden. Zu diesen und weiteren Ergebnissen kommt die Studie ‚The AI Powered Enterprise: Unlocking the potential of AI at scale‘, für die 950 Unternehmen aus elf Ländern und elf Branchen befragt wurden.

mehr lesen

KI übernimmt Arbeit von Software-Ingenieuren

Für selbstadaptive Software gibt es heute unzählige Anwendungsmöglichkeiten. Doch die Entwicklung der Systeme stellt Software-Ingenieure vor neue Herausforderungen. Wissenschaftler vom Softwaretechnik-Institut Paluno an der Universität Duisburg-Essen (UDE) haben jetzt vielversprechende Ergebnisse mit neuartigen Verfahren der künstlichen Intelligenz (KI) erzielt, die den Entwicklungsprozess selbstadaptiver Systeme automatisieren.

mehr lesen

Wie wird künstliche Intelligenz zum Standardwerkzeug für den Mittelstand?

Das Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU möchte zusammen mit den produzierenden Unternehmen des Mittelstands die entscheidende Barriere für die Anwendung künstlicher Intelligenz überwinden: Die Köpfe sind überzeugt, aber die Umgestaltung der Produktionsanlagen und -prozesse in den Fabriken stockt. Deshalb arbeiten die Forscherinnen und Forscher an einem systematischen Leitfaden, mit dem KI zum Standardwerkzeug werden soll, das bessere Produkte mit geringerem Ressourceneinsatz ermöglicht. Erste Ergebnisse sind vielversprechend.

mehr lesen

Leistungsstarkes KI-System am KIT installiert

Als ein Werkzeug der Spitzenforschung ist künstliche Intelligenz (KI) heute unentbehrlich. Für einen erfolgreichen Einsatz – ob in der Energieforschung oder bei der Entwicklung neuer Materialien – wird dabei neben den Algorithmen zunehmend auch spezialisierte Hardware zu einem immer wichtigeren Faktor. Das Karlsruher Institut für Technologie (KIT) hat nun als erster Standort in Europa das neuartige KI-System NVIDIA DGX A100 in Betrieb genommen. Angeschafft wurde es aus Mitteln der Helmholtz Artificial Intelligence Cooperation Unit (HAICU).

mehr lesen

Machine Learning einfach gemacht

Seit einigen Jahren schon werden die Fantasien der Ingenieure und Anlagenbauer beflügelt durch die Möglichkeiten von KI- und Machine-Learning-Algorithmen. Klingt zwar zunächst sehr kompliziert, bietet aber konkrete Vorteile für die smarte Fabrik. Maschinen und Anlagen bzw. Produktionsprozesse erzeugen kontinuierlich Daten. Erfolgreich werden zukünftig Unternehmen sein, denen es gelingt, Mehrwert aus diesen Daten zu generieren.

mehr lesen

Die vernetze Fabrik für die Zukunft

Krisen decken Schwachstellen auf. In der Corona-Pandemie zeigt sich der Wert der vernetzten Produktion und Logistik. Das Internet der Dinge (Internet of Things, kurz IoT) hilft der Industrie, auf Ausfälle flexibler als bisher zu reagieren, denn in Echtzeit lassen sich Auslastung und Zustand jeder einzelnen Maschine verfolgen, und es herrscht Transparenz über die Lieferkette. Die Bosch-Gruppe, eines der weltweit führenden Technologie- und Dienstleistungsunternehmen, hat damit positive Erfahrungen gemacht.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.