Grafisch zur Lösung
Deep Learning mit grafischer Programmierumgebung
Mit VisionPro Deep Learning 2.0 stellt Cognex seine neueste Deep-Learning-basierte Software zur Bildanalyse vor, die speziell für die Fabrikautomatisierung entwickelt wurde. Eine grafische Benutzeroberfläche vereinfacht das Trainieren des neuronalen Netzwerks.
Bild: Cognex Germany Inc.

Die Anwendung von Deep Learning-Methoden erforderte bislang ein solides Basiswissen in diesem Bereich. VisionPro Deep Learning verkleinert diese Einstiegshürde nun durch eine grafische Benutzeroberfläche und vereinfacht das Trainieren des neuronalen Netzwerks. Die Werkzeuge des Tools werden im Gegensatz zu traditionellen regelbasierten Bildverarbeitungsalgorithmen mit Bildern trainiert. Die grafische Benutzeroberfläche stellt eine einfache Umgebung zur Kontrolle und Entwicklung von Anwendungen zur Verfügung und reduziert den Aufwand für das Sammeln von Bildern, das Trainieren des neuronalen Netzwerks und dessen Test an verschiedenen Bildsätzen deutlich. Anwender*innen haben in VisionPro Deep Learning die Auswahl zwischen vier Tools zur Bildanalyse, die speziell für die Fabrikautomatisierung entwickelt wurden. Sie sind für Vision-Inspektionen in diesem Einsatzbereich optimiert und benötigen daher nur eine kleine Anzahl an Bildern, um ein schnelles Trainieren zu ermöglichen.

Robust identifizieren

Bild: Cognex Germany Inc.

Das Tool Blue Locate ist für Aufgaben prädestiniert, bei denen Teile mit unterschiedlichem Erscheinungsbild erkannt oder gezählt werden müssen. Durch die robuste Auslegung identifiziert das Tool die gesuchten Merkmale auch auf unruhigem Hintergrund, kontrastarmen Teilen und Teilen, die sich verbiegen, ihre Form verändern oder schlecht beleuchtet sind. Selbst bei Abweichungen der Perspektive, Ausrichtung, Helligkeit, des Glanzes oder der Farbe lokalisiert Blue Locate die von Musterbildern gelernten Teile zuverlässig. Aus diesen Gründen eignet es sich unter anderem für den Einsatz in der automatisierten Montageüberprüfung.

Defekte erkennen

Wenn kleinste Fehler trotz vieler verschiedener Hintergründe und Oberflächentexturen von Teilen sicher gefunden werden müssen, ist das Tool Red Analyze zur Defekterkennung und -segmentierung ideal. Durch das Antrainieren von Beispielen guter und schlechter Teile ist es in der Lage, normale Abweichungen in Bezug auf das Aussehen zu tolerieren, Fehler, Verunreinigungen und andere Mängel jedoch sicher zu erkennen. Das Tool kann auch verwendet werden, um variable Bereiche in einem Bild zu segmentieren. Beispiele dafür sind Schweißnähte, geklebte oder lackierte Stellen, deren Abdeckung später mit traditionellen Bildverarbeitungstools gemessen wird, oder Hintergrundmerkmale, die dynamisch aus dem Bild ausgeblendet werden, um andere Prüfungen zu vereinfachen.

Klassifizieren

Das Tool Green Classify ist ein robuster Klassifikator, der verschiedene Objekttypen unterscheiden, Fehlertypen identifizieren und sogar gute und schlechte Teile klassifizieren kann. Nach dem Anlernen von gelabelten Bildern identifiziert es Objekte anhand ihrer gemeinsamen Merkmale wie Farbe, Textur, Material, Verpackung und Fehlertyp und teilt sie in Klassen ein. Dabei toleriert das Tool natürliche Abweichungen innerhalb derselben Klasse und unterscheidet zuverlässig akzeptable Varianten aus verschiedenen Klassen.

Seiten: 1 2Auf einer Seite lesen

Anzeige

Anzeige

Das könnte Sie auch Interessieren

Bild: Fraunhofer IOSB-INA
Bild: Fraunhofer IOSB-INA
Fraunhofer entwickelt Lösungen für Einsatz künstlicher Intelligenz in industrieller Produktion

Fraunhofer entwickelt Lösungen für Einsatz künstlicher Intelligenz in industrieller Produktion

Wie macht die intelligente Nutzung von Daten Fabriken fit für die Zukunft? Im Projekt ‚Datenfabrik.NRW‘ erarbeiten vier Fraunhofer-Institute (Entwurfstechnik Mechatronik IEM, Materialfluss und Logistik IML, Optronik, Systemtechnik und Bildauswertung IOSB und Intelligente Analyse- und Informationssysteme IAIS) konkrete Anwendungen für den vielfältigen Einsatz von künstlicher Intelligenz in der Produktion und setzen diese in realen Produktionsumgebungen bei Claas und Schmitz Cargobull um. Das Land Nordrhein-Westfalen fördert das Zukunftsprojekt mit 9,2Mio.€. Die Kompetenzplattform KI.NRW nimmt die Datenfabrik.NRW als KI-Flagshipprojekt in ihr Netzwerk auf.

Bild: Arrow Central Europe GmbH
Bild: Arrow Central Europe GmbH
Guardian Technologies gewinnt Innovators Award von Arrow Electronics

Guardian Technologies gewinnt Innovators Award von Arrow Electronics

Das KI-Startup Guardian Technologies aus Wangen im Allgäu ist der diesjährige Gewinner des Innovator Awards von Arrow Electronics. An dem Wettbewerb haben mehr als 50 Technologie-Startups aus Deutschland, Österreich und der Schweiz teilgenommen. Zwölf Unternehmen sind in das Finale eingezogen. Das im Jahr 2020 gegründete Unternehmen Guardian Technologies ist ein Hersteller von kompakten, KI- und Kamera-basierten Systemen, die Brände schnell entdecken und löschen können.

Bild: Ametek GmbH - Creaform Deutschland GmbH
Bild: Ametek GmbH - Creaform Deutschland GmbH
Kostenfreies Webinar ‚Robot Vision‘

Kostenfreies Webinar ‚Robot Vision‘

Am Dienstag, den 28. September, findet ab 14 Uhr im Rahmen der inVISION TechTalks das kostenlose Webinar ‚Robot Vision‘ statt. In drei 20-minütigen Präsentationen stellen Wenglor, Vecow und Lucid Vision aktuelle Trends bei Software für die Roboterführung, KI-Plattformen für autonome geführte Robotik und Time-of-Flight-Kameras für Robotik und Automation vor.