- Anzeige -
- Anzeige -
Lesedauer: 6min
Interview mit Dr. Maximilian Beinhofer, Head of Cognitive Systems Development, TGW
Künstliche Intelligenz (KI) und Machine Learning halten in immer mehr Wirtschaftsbereichen Einzug, auch in der Intralogistik. TGW hat beispielsweise den selbstlernenden Pickroboter Rovolution entwickelt. Welche Vorteile das preisgekrönte System bietet und wie mithilfe von KI das Fulfillment Center der Zukunft optimiert werden kann, erklärt im Interview Dr. Maximilian Beinhofer, Head of Cognitive Systems Development bei TGW.
 Dr. Maximilian Beinhofer leitet den Bereich Cognitive Systems Development im Headquarter der TGW Logistics Group. Er studierte Mathematik an den Universitäten Aachen sowie Freiburg und promovierte dort im Fachbereich Informatik in Probabilistischer Robotik.
Dr. Maximilian Beinhofer leitet den Bereich Cognitive Systems Development im Headquarter der TGW Logistics Group. Er studierte Mathematik an den Universitäten Aachen sowie Freiburg und promovierte dort im Fachbereich Informatik in Probabilistischer Robotik.Bild: TGW Logistics Group GmbH

Herr Beinhofer, was genau versteht man unter Machine Learning?

Dr. Maximilian Beinhofer: Mit Machine Learning lassen sich rund 95 Prozent aller Anwendungen von Künstlicher Intelligenz zusammenfassen. Maschinelles Lernen ist ein Überbegriff für die Generierung von Wissen aus Erfahrung. Basis sind Algorithmen, die nicht nach einer fest einprogrammierten Regel vorgehen, sondern bei denen nur die grundlegende Struktur vorgegeben ist. Die Algorithmen werden trainiert, um Muster zu erkennen und Vorhersagen treffen zu können.

Machine Learning setzt also auf Erfahrungswerte. Basierend auf historischen Daten lernt das System mit neuen – noch unbekannten – Daten eigenständig umzugehen. Der Algorithmus wird kontinuierlich verfeinert, lernt dazu und kann sich selbstständig und dynamisch auf neue Situationen einstellen. Darin liegt der Schlüssel zu gesteigerter Effizienz in der Intralogistik – etwa beim automatischen Kommissionieren.

Was sind die Vorteile der Technologie?

Dr. Beinhofer: Künstliche Intelligenz und ihre Teilbereiche sind Wachstumstreiber in vielen Branchen. In der Supply Chain schlummern an vielen Stellen Informationen, die großes Potenzial mitbringen, um Prozesse effizienter zu gestalten. Das betrifft die Performance einer gesamten Anlage ebenso wie von einzelnen Elementen. Durch den Einsatz von Machine Learning profitieren Unternehmen von effizienteren Abläufen. Bestellungen können beispielsweise fehlerfrei und mit maximaler Geschwindigkeit kommissioniert und an Kunden versendet werden.

In welchen Bereichen beschäftigt sich TGW mit künstlicher Intelligenz?

Dr. Beinhofer: Das Einsatzspektrum von Künstlicher Intelligenz ist breit gefächert. Wir wollen Machine Learning gezielt dort einsetzen, wo Unternehmen und deren Kunden den größten Nutzen daraus ziehen können. Das ist überall dort der Fall, wo es darum geht, Muster in großen Datenbeständen zu erkennen und Prozesse und Abläufe zu optimieren. Daher betrachten wir bei TGW Machine Learning aus drei Perspektiven: auf Objekt-Ebene, auf Materialflussebene und auf Maschinen-Ebene.

Seiten: 1 2Auf einer Seite lesen

Autor:
Firma: TGW Logistics Group GmbH
www.tgw-group.com

News

- Anzeige -

Weitere Beiträge

Das könnte Sie auch interessieren

KI per Smartphone

Die KI-Software AI.See von Elunic wird häufig zur Prüfung von Oberflächen aus Metall und Kunststoff eingesetzt. Mit einem Starterkit und einem Smartphone können Anwender selbst einen ersten Eindruck einer KI-basierten Qualitätsprüfung gewinnen.

mehr lesen

Künstliche Intelligenz analysiert wertvolle Inhaltsstoffe

Kunststoffmüll ist ein Problem. Weltweit. Der Grund: Kunststoff ist meist verbaut und Teil eines komplexen Produktes: Auto, Kühlschrank, Lederschuh oder Smartphone. Materialanalyse, -trennung und Recycling wären ein Lösungsansatz. Hier setzt das Projekt ‚Digital Lifecycle Record for the Circular Economy‘ – kurz ReCircE – an. Es will mithilfe von künstlicher Intelligenz ein umfassendes Recyclingverfahren entwickeln. Teil des Projektes ist ein digitaler Produktpass. Er soll Transparenz über die gesamte Wertstoffkette schaffen, um die Verwertung von Kunststoffen aus hochentwickelten Produkten zu erleichtern.

mehr lesen

Unternehmen reagieren bei ethischen KI-Fragen zögerlich

Das Bewusstsein für ethische Fragestellungen beim Einsatz von künstlicher Intelligenz ist in Unternehmen und Verwaltungen gestiegen. Dennoch fällt ihre diesjährige Handlungsbilanz gemischt aus, da nur in Teilbereichen Verbesserungen erzielt wurden. Zu diesen und weiteren Erkenntnissen kommt eine Studie von Capgemin für die 2.900 Konsumenten sowie 900 Führungskräfte befragt wurden.

mehr lesen

Künstliche Intelligenz trifft Embedded

An künstlicher Intelligenz (KI) und maschinellem Lernen führt kein Weg vorbei. Die Automobilindustrie, die industrielle Automation, die Landwirtschaft – kaum ein Sektor, der nicht vor tiefgreifenden Veränderungen steht. Mit KI-fähigen Embedded-Systemen steht künstliche Intelligenz zunehmend direkt at the Edge zur Verfügung.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.