- Anzeige -
- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: min
Vom Prototypen zur Lösung

Vom Prototypen zur Lösung

Raus aus der Proof-of-Concept-Hölle

Bild: ©metamorworks/stock.adobe.com

Viele Unternehmen scheitern daran, die Prototypen ihrer Data-Analytics-Projekte in eine produktive, skalierbare Lösung zu überführen. Entscheidend dafür sind gute Planung und ein langer Atem, meint Danny Claus von DoubleSlash.

Machine Learning (ML) lebt davon, dass Daten in ausreichender Menge und Qualität zur Verfügung stehen, um die Algorithmen zu füttern, die dann Muster und Gesetzmäßigkeiten erkennen. Dies wiederum bildet die Basis dafür, dass Maschinen tatsächlich selbstständig lernen und ihre Funktion den Gegebenheiten anpassen können. Der Mangel an Daten – die auch in der erforderlichen Qualität vorliegen müssen – gilt als einer der größten Stolpersteine auf dem Weg zu einer ML-Lösung. Dabei gilt: Was als Proof of Concept funktioniert, ist noch lange nicht reif für den Einsatz in der Produktion. Die Herausforderungen und die Komplexität bei der Umsetzung von Data-Analytics-Projekten werden oft unterschätzt. Deshalb schaffen es bislang nur wenige Projekte tatsächlich in den produktiven Betrieb. Wer die Hürden nehmen will, muss gut und vor allem frühzeitig planen.

80 Prozent Datenintegration

Stehen die benötigten Daten gar nicht oder in nicht ausreichender Menge zur Verfügung, kann es sein, dass Maschinen und Anlagen entweder noch nicht mit den notwendigen Sensoren und Funktionen ausgestattet sind oder sie liefern nicht alle benötigten Informationen. Doch selbst wenn die Daten verfügbar sind, verteilen sie sich oft auf unterschiedliche Fachbereiche – isolierte Datensilos aber machen eine übergreifende Auswertung der Daten unmöglich. Für die Datenintegration sollten daher etwa 80 Prozent des Gesamtaufwands bei Data-Analytics-Projekten eingeplant werden. Bereits in einer sehr frühen Phase des Produktdesigns sollten die datentechnischen Voraussetzungen für Machine Learning betrachtet sowie anhand eines konkreten Use Cases definiert werden, welche Daten später benötigt werden. Im Anschluss empfiehlt es sich, möglichst viele Informationen zu übermitteln bzw. parallel zu klären, welche Technologien zum Einsatz kommen sollen. Beispielsweise stellt sich die Frage, ob der Einsatz von Cloud- und Big-Data-Technologien sinnvoll ist. Viele Anwendungen lassen sich auch mit einfacheren Methoden und Technologien umsetzen. So kommt man beispielsweise über den Einsatz simpler regel- oder schwellwertbasierter Verfahren und Visualisierungen mit BI-Dashboards schnell und deutlich günstiger ans Ziel.

Durchdachte Datenverwaltung

Für größere Unternehmen kann es sinnvoll sein, einen Data Lake zu schaffen, in dem Daten kontinuierlich zusammengeführt werden. Aufwand und Kosten dieser Herangehensweise sollten jedoch gegen den möglichen Mehrwert abgewogen werden. Allzu oft allerdings reichen Menge und Qualität der verfügbaren Daten – zumindest am Anfang – nicht aus, um das Projekt wirklich erfolgreich zu machen. Entweder sind Datenbestände unvollständig bzw. fehlerhaft oder sie decken nur einen kurzen Zeitraum ab. Daher sollte bereits in einer sehr frühen Projektphase geprüft werden, ob Datenqualität und -quantität ausreichen, um einen Use Case aufzubauen und die gesetzten Ziele zu erreichen. Reichen sie nicht, muss zunächst sichergestellt werden, ob, wie und bis wann die benötigten Daten zur Verfügung stehen. Es genügt nicht, mit dem Sammeln der Daten erst zu beginnen, wenn ein Machine Learning Projekt gestartet wird.

Seiten: 1 2 3Auf einer Seite lesen

Autor:
Firma:
- Anzeige -

News

- Anzeige -

Weitere Beiträge

Das könnte Sie auch interessieren

Wie KI in der Krise Wirtschaftsleistung unterstützen kann

Künstliche Intelligenz hat einen großen Einfluss auf die Zeit in der Corona-Krise, aber auch nach der Krise ist sie sehr hilfreich. Claudia Bünte ist Expertin auf dem Gebiet der KI und Professorin für ‚International Business Administration‘ mit Schwerpunkt Marketing an der SRH in Berlin. 2016 gründete sie die Marketingberatung ‚Kaiserscholle – Center of Marketing Excellence‘ und berät Top-Manager in Kernfragen der Markenführung und des Marketings.

mehr lesen

Digitalisierung und künstliche Intelligenz optimieren Prozessanlagen

Digitalisierung und künstliche Intelligenz (KI) eröffnen auch in der Prozessautomatisierung Perspektiven für Einsparungen in allen Phasen des Lebenszyklus einer Anlage. Schon verfügbar ist ein digitales Feldgerät, das Festo Motion Terminal VTEM. Auch Dashboards von Festo visualisieren Anlagenzustände und selbst künstliche Intelligenz ist in der Prozessautomatisierung keine ferne Zukunftsmusik mehr.

mehr lesen

Künstliche Intelligenz gezielt in der Wertschöpfung einsetzen

Die Wettbewerbsfähigkeit deutscher produzierender Unternehmen hängt heute mehr denn je von der Fähig-keit ab, komplexen Herausforderungen wie volatilen Märkten effektiv zu begegnen. Insbesondere im industri-ellen Kontext ergeben sich durch eine stetig wachsende Datenverfügbarkeit sowie verbesserte Analysemög-lichkeiten erhebliche Potenziale: „Artificial Intelligence“ (AI), zu Deutsch „Künstliche Intelligenz“ (KI), ermög-licht die Verarbeitung großer Datenmengen und kann dabei helfen, Prognosen abzuleiten und die Entschei-dungsfindung zu erleichtern. Um diese Potenziale abrufen zu können, müssen Unternehmen befähigt wer-den, Künstliche Intelligenz in der Wertschöpfung gezielt einzusetzen.

mehr lesen

Quantensprung für die künstliche Intelligenz

Quantencomputer werden die künstliche Intelligenz und das Maschinelle Lernen tiefgreifend verändern und völlig neue Anwendungsmöglichkeiten erschließen. In einer Studie erläutern Experten der Fraunhofer-Allianz Big Data und künstliche Intelligenz gemeinsam mit wissenschaftlichen Partnern, wie Quantencomputer Verfahren des Maschinellen Lernens beschleunigen können und welche Potenziale ihr Einsatz in Industrie und Gesellschaft mit sich bringen wird. Die Studie stellt grundlegende Konzepte und Technologien des Quantencomputings vor, analysiert die aktuelle Forschungs- und Kompetenzlandschaft und zeigt Marktpotenziale auf.

mehr lesen

KI-Studie 2020: Das Fremdeln des Top-Managements mit KI

Künstliche Intelligenz ist eine wichtige Technologie, von der sich Unternehmen handfeste Wettbewerbsvorteile versprechen. Das ist das Ergebnis einer aktuellen Studie des IT-Dienstleisters Adesso unter Führungskräften. Konkrete Projekte haben allerdings bislang nur wenige Firmen umgesetzt. Besonders zurückhaltend zeigt sich bei dem Thema das Top-Management.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.