- Anzeige -
- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: min
Der Algorithmus als Treibstoff

Data Analytics an der Schwelle

Der Algorithmus als Treibstoff

Bild: Contact Software GmbH

Die digitale Transformation führt zu immer größeren, schnelleren und variableren Datenflüssen. Die intelligente Ordnung und Analyse dieser Daten lenkt den Blick auf Werte, die sich oft über neue Geschäftsmodelle monetarisieren lassen. Die Herausforderung ist, auch einmal radikalere Ideen durchzuspielen, als nur die der vorausschauenden Instandhaltung.
Gezielte Analyse von Daten entscheidet immer häufiger über den Erfolg einer Geschäftsidee. Für Unternehmen stellt sich die Frage, wie diese Herausforderungen in der Praxis angenommen und die Chancen für die eigenen Aktivitäten aufgegriffen werden können. Der Startpunkt dafür sind automatisierte Prozesse und Analysewerkzeuge, die aus Datenströmen Erkenntnisse ermitteln.

Wo wir stehen

Seit Beginn des Milleniums wurden enorme technologische Durchbrüche bei der Leistungsfähigkeit von Graphikprozessoren und im Bereich Machine Learning erreicht. Dies hat insbesondere die Entwicklung von neuronalen Netzwerken beschleunigt und ihren Einsatz bei der Bilderkennung, Sprachanalyse und Text-Klassifizierung möglich gemacht. Mit der Verfügbarkeit von immer größeren Datenmengen und der damit einhergehenden Komplexität der Datenmodelle ist eine Schwelle erreicht, wo klassische Analysemethoden oft nicht mehr zuverlässig greifen. Hier sind neuronale Netzwerke durch ihre größere Anpassungsfähigkeit an die Datenlage viel besser darin, präzise Vorhersagen zu treffen. Grundlage dafür ist eine Rechenleistung, die dank parallel arbeitender Graphikprozessoren und spezieller, auf neuronale Netzwerke abgestimmte Hardware deutlich gesteigert werden konnte. Die Barriere zum Einsatz solcher Technologien liegt momentan also eher am Fachkräftemangel und einer relativ langen Entwicklungszeit für dedizierte Lösungen. Die Entwicklung sich selbst programmierender neuronaler Netzwerke läuft allerdings bereits und zeigt vielversprechende Ergebnisse, was zu einer weiteren Beschleunigung und Breite in der Anwendung führen wird.

Die Datenpyramide

Bei der Adaption der neuen Techniken ist zu beobachten, dass oft ad-hoc-Ansätze gewählt werden, um möglichst schnell zu den neuesten Data-Analytics-Methoden vorzustoßen. Dieser Ansatz ist jedoch zu kurz gegriffen. Die wertschöpfende Nutzung von Daten setzt voraus, dass sie kontinuierlich gut strukturiert bereitgestellt werden. Erst dann führen die gezielte Abfrage und Verarbeitung der Daten zu neuen Erkenntnissen. Datenanalyse ist ein Prozess mit ständigem Verbesserungspotenzial, das nur zu heben ist, wenn die Datenmengen nach klaren Vorgaben und Analysestrategien ausgewertet werden. Um diese formulieren zu können, ist die genaue Kenntnis des fachlichen Kontextes unabdingbar. Erst dann können zielführende Verfahren und Algorithmen entwickelt beziehungsweise ausgewählt werden. Der nächste Schritt nach vorn ist das Reporting und die Visualisierung der bereitgestellten Datenflüsse. Findet das kontinuierlich statt, ergeben sich Geschäftsideen und Ziele für die Vorhersage, die dann gezielt angegangen werden kann. Der direkte Sprung von unten nach oben ist ohne erforderliche Basis meist wenig erfolgreich.

Seiten: 1 2Auf einer Seite lesen

Autor:
Firma:
- Anzeige -

News

- Anzeige -

Weitere Beiträge

Das könnte Sie auch interessieren

Wie KI in der Krise Wirtschaftsleistung unterstützen kann

Künstliche Intelligenz hat einen großen Einfluss auf die Zeit in der Corona-Krise, aber auch nach der Krise ist sie sehr hilfreich. Claudia Bünte ist Expertin auf dem Gebiet der KI und Professorin für ‚International Business Administration‘ mit Schwerpunkt Marketing an der SRH in Berlin. 2016 gründete sie die Marketingberatung ‚Kaiserscholle – Center of Marketing Excellence‘ und berät Top-Manager in Kernfragen der Markenführung und des Marketings.

mehr lesen

Digitalisierung und künstliche Intelligenz optimieren Prozessanlagen

Digitalisierung und künstliche Intelligenz (KI) eröffnen auch in der Prozessautomatisierung Perspektiven für Einsparungen in allen Phasen des Lebenszyklus einer Anlage. Schon verfügbar ist ein digitales Feldgerät, das Festo Motion Terminal VTEM. Auch Dashboards von Festo visualisieren Anlagenzustände und selbst künstliche Intelligenz ist in der Prozessautomatisierung keine ferne Zukunftsmusik mehr.

mehr lesen

Künstliche Intelligenz gezielt in der Wertschöpfung einsetzen

Die Wettbewerbsfähigkeit deutscher produzierender Unternehmen hängt heute mehr denn je von der Fähig-keit ab, komplexen Herausforderungen wie volatilen Märkten effektiv zu begegnen. Insbesondere im industri-ellen Kontext ergeben sich durch eine stetig wachsende Datenverfügbarkeit sowie verbesserte Analysemög-lichkeiten erhebliche Potenziale: „Artificial Intelligence“ (AI), zu Deutsch „Künstliche Intelligenz“ (KI), ermög-licht die Verarbeitung großer Datenmengen und kann dabei helfen, Prognosen abzuleiten und die Entschei-dungsfindung zu erleichtern. Um diese Potenziale abrufen zu können, müssen Unternehmen befähigt wer-den, Künstliche Intelligenz in der Wertschöpfung gezielt einzusetzen.

mehr lesen

Quantensprung für die künstliche Intelligenz

Quantencomputer werden die künstliche Intelligenz und das Maschinelle Lernen tiefgreifend verändern und völlig neue Anwendungsmöglichkeiten erschließen. In einer Studie erläutern Experten der Fraunhofer-Allianz Big Data und künstliche Intelligenz gemeinsam mit wissenschaftlichen Partnern, wie Quantencomputer Verfahren des Maschinellen Lernens beschleunigen können und welche Potenziale ihr Einsatz in Industrie und Gesellschaft mit sich bringen wird. Die Studie stellt grundlegende Konzepte und Technologien des Quantencomputings vor, analysiert die aktuelle Forschungs- und Kompetenzlandschaft und zeigt Marktpotenziale auf.

mehr lesen

KI-Studie 2020: Das Fremdeln des Top-Managements mit KI

Künstliche Intelligenz ist eine wichtige Technologie, von der sich Unternehmen handfeste Wettbewerbsvorteile versprechen. Das ist das Ergebnis einer aktuellen Studie des IT-Dienstleisters Adesso unter Führungskräften. Konkrete Projekte haben allerdings bislang nur wenige Firmen umgesetzt. Besonders zurückhaltend zeigt sich bei dem Thema das Top-Management.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.