- Anzeige -
- Anzeige -
Lesedauer: min
Der Algorithmus als Treibstoff

Data Analytics an der Schwelle

Der Algorithmus als Treibstoff

Bild: Contact Software GmbH

Die digitale Transformation führt zu immer größeren, schnelleren und variableren Datenflüssen. Die intelligente Ordnung und Analyse dieser Daten lenkt den Blick auf Werte, die sich oft über neue Geschäftsmodelle monetarisieren lassen. Die Herausforderung ist, auch einmal radikalere Ideen durchzuspielen, als nur die der vorausschauenden Instandhaltung.
Gezielte Analyse von Daten entscheidet immer häufiger über den Erfolg einer Geschäftsidee. Für Unternehmen stellt sich die Frage, wie diese Herausforderungen in der Praxis angenommen und die Chancen für die eigenen Aktivitäten aufgegriffen werden können. Der Startpunkt dafür sind automatisierte Prozesse und Analysewerkzeuge, die aus Datenströmen Erkenntnisse ermitteln.

Wo wir stehen

Seit Beginn des Milleniums wurden enorme technologische Durchbrüche bei der Leistungsfähigkeit von Graphikprozessoren und im Bereich Machine Learning erreicht. Dies hat insbesondere die Entwicklung von neuronalen Netzwerken beschleunigt und ihren Einsatz bei der Bilderkennung, Sprachanalyse und Text-Klassifizierung möglich gemacht. Mit der Verfügbarkeit von immer größeren Datenmengen und der damit einhergehenden Komplexität der Datenmodelle ist eine Schwelle erreicht, wo klassische Analysemethoden oft nicht mehr zuverlässig greifen. Hier sind neuronale Netzwerke durch ihre größere Anpassungsfähigkeit an die Datenlage viel besser darin, präzise Vorhersagen zu treffen. Grundlage dafür ist eine Rechenleistung, die dank parallel arbeitender Graphikprozessoren und spezieller, auf neuronale Netzwerke abgestimmte Hardware deutlich gesteigert werden konnte. Die Barriere zum Einsatz solcher Technologien liegt momentan also eher am Fachkräftemangel und einer relativ langen Entwicklungszeit für dedizierte Lösungen. Die Entwicklung sich selbst programmierender neuronaler Netzwerke läuft allerdings bereits und zeigt vielversprechende Ergebnisse, was zu einer weiteren Beschleunigung und Breite in der Anwendung führen wird.

Die Datenpyramide

Bei der Adaption der neuen Techniken ist zu beobachten, dass oft ad-hoc-Ansätze gewählt werden, um möglichst schnell zu den neuesten Data-Analytics-Methoden vorzustoßen. Dieser Ansatz ist jedoch zu kurz gegriffen. Die wertschöpfende Nutzung von Daten setzt voraus, dass sie kontinuierlich gut strukturiert bereitgestellt werden. Erst dann führen die gezielte Abfrage und Verarbeitung der Daten zu neuen Erkenntnissen. Datenanalyse ist ein Prozess mit ständigem Verbesserungspotenzial, das nur zu heben ist, wenn die Datenmengen nach klaren Vorgaben und Analysestrategien ausgewertet werden. Um diese formulieren zu können, ist die genaue Kenntnis des fachlichen Kontextes unabdingbar. Erst dann können zielführende Verfahren und Algorithmen entwickelt beziehungsweise ausgewählt werden. Der nächste Schritt nach vorn ist das Reporting und die Visualisierung der bereitgestellten Datenflüsse. Findet das kontinuierlich statt, ergeben sich Geschäftsideen und Ziele für die Vorhersage, die dann gezielt angegangen werden kann. Der direkte Sprung von unten nach oben ist ohne erforderliche Basis meist wenig erfolgreich.

Seiten: 1 2Auf einer Seite lesen

Autor:
Firma:

News

- Anzeige -

Weitere Beiträge

Das könnte Sie auch interessieren

Mit Machine Learning präzise Vorhersagen treffen

Viele Unternehmen haben das Potenzial selbstlernender Systeme, die Machine Learning benutzen, erkannt. Dieser Teilbereich der künstlichen Intelligenz basiert auf Algorithmen, die Muster und Gesetzmäßigkeiten in großen Datenmengen erkennen. Mithilfe neuronaler Netze lassen sich aus den Datenbeständen Rückschlüsse ziehen und Prognosen treffen. In vielen Branchen bereits etabliert, findet Machine Learning als Analyse- und Steuerungsinstrument nun auch zunehmend Anwendung in der Logistik. Ein Beispiel dafür ist die Verknüpfung des Microsoft Azure Machine Learning Studios mit Bestandsmanagement- oder ERP-Systemen. Mit diesen Lösungen lassen sich unter anderem Bestände und Bestellungen optimieren sowie Lagerprozesse erheblich verbessern.

mehr lesen

Studie von VDE und Bertelsmann Stiftung: KI-Ethik messbar machen

In einer neuen Studie zeigen die Technologieorganisation VDE und die Bertelsmann Stiftung, wie sich Ethikprinzipien für künstliche Intelligenz (KI) in die Praxis bringen lassen. Zwar gibt es eine Vielzahl an Initiativen, die ethische Richtlinien für die Gestaltung von KI veröffentlicht haben, allerdings bis dato kaum Lösungen für deren praktische Umsetzung. Genau hier setzt der VDE als Initiator und Leiter der ‚AI Ethics Impact Group‘ gemeinsam mit der Bertelsmann Stiftung an.

mehr lesen

KI in der medizinischen Diagnostik

Das Robotik Startup Robominds hat in Reaktion auf die aktuelle Corona-Pandemie eine Lösung entwickelt, die Roboterarme befähigt, Proben und Reagenzien für die medizinische Diagnostik vor zu sortieren. Auf Basis künstlicher Intelligenz erkennt das Soft-und Hardwaresystem Robobrain Position und Farbe der Probenröhrchen und kann diese ohne vorheriges Einlernen voll automatisiert vor- und einsortieren.

mehr lesen

Künstliche Intelligenz für ‚Beyond 5G‘

Während viele europäische Staaten gerade dabei sind, den Mobilfunk der 5. Generation aufzubauen, arbeitet die Forschung bereits an seiner Optimierung. Denn obwohl 5G seinen Vorgängern weit überlegen ist, hat auch der neueste Mobilfunkstandard noch Verbesserungspotenzial: Besonders in urbanen Gebieten, in denen ein direkter Sichtkontakt zwischen Sender und Empfänger erschwert ist, funktioniert die Funkverbindung oftmals noch nicht zuverlässig. In dem kürzlich gestarteten EU-Projekt Ariadne erforschen nun elf europäische Partner, wie sich durch die Nutzung von hohen Frequenzbändern und künstlicher Intelligenz eine fortschrittliche Systemarchitektur für »Beyond 5G« entwickeln lässt.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.