- Anzeige -
- Anzeige -
Lesedauer: 4min
Stücklistenmanagement
Wer sucht, der findet

Mai 11, 2020 | Industrielle Produktion

Aus wievielen Teilen ein Produkt auch besteht, liegen Informationen zu den benötigten Komponenten vor, ist es leichter herzustellen. Mit künstlicher Intelligenz und sogenannten Insight Engines können solche Informationen aus unterschiedlichen Systemen zusammengetragen werden.
Bild: ©vegefox.com/stock.adobe.com

Stücklistenmanagement ist ein wichtiger Bestandteil bei der Fertigung von Produkten. Neben Zeichnungen und Arbeitsplänen bilden sie eine Basis des betrieblichen Datenbestandes. Dabei gestaltet es sich nicht immer einfach, alle relevanten Informationen zu den benötigten Komponenten übersichtlich zur Verfügung zu haben. Gerade bei Lieferverzögerungen oder Lieferausfällen benötigter Komponenten ist es wettbewerbsentscheidend, den Überblick zu behalten, ohne wertvolle Ressourcen wie Mitarbeiter unnötig zu binden.

Mit KI suchen

Systeme zur Verwaltung von Stücklisten bzw. Bill of Materials (BOM) bieten zwar Suchfunktionen, jedoch sind diese beschränkt auf die Daten des jeweiligen Systems. Anwender finden so zwar Informationen zu ihrem Suchbegriff, bei weiterführenden Informationen stoßen diese Suchfunktionen oft an ihre Grenzen. Anwender müssen also in unterschiedlichen Programmen suchen, was wiederum mit Zeitaufwand verbunden ist. Intelligente Wissensmanagementlösungen, sogenannte Insight Engines, können bei der Bereitstellung genau dieser benötigten Informationen helfen. Insight Engines kombinieren klassische Suchfunktionen mit künstlicher Intelligenz. Mittels Technologien der Spracherkennung sowie Verfahren des maschinellen Lernens erleichtern sie die Suche nach Informationen. Die Lösung der Mindbreeze GmbH etwa bezieht die Inhalte aus vielen Unternehmensdatenquellen in ihre Recherche ein – unabhängig davon, ob es sich dabei um strukturierte oder unstrukturierte Inhalte handelt. Dadurch können mit einer Suchabfrage die Ergebnisse zu der abgefragten Komponente aus allen Datenquellen extrahiert und dargestellt werden. So erhalten die Anwender zusätzliche relevante Informationen, beispielsweise länderspezifische Restriktionen oder Verfügbarkeiten, ohne eine erneute Rechercheabfrage in einem weiteren System zu starten.

Fragen in natürlicher Sprache

Die Suchabfrage selbst kann in natürlicher Sprache gestellt werden. Dabei sind Insight Engines durch Natural Language Processing (NLP) und Natural Language Understanding (NLU) in der Lage, Phrasen, ganze Sätze oder Fragen korrekt zu verstehen. NLP sorgt dabei für das Verstehen, Übersetzen und Interpretieren der menschlichen Sprache, während mit NLU die Intention beziehungsweise das konkrete Anliegen des Anwenders identifiziert wird. Durch die semantische Analyse der Inhalte und die Verknüpfung von Informationen ist es auch möglich, Antworten auf Fragestellungen mit ‚wo‘, ‚wer‘, ‚was‘, ‚wann‘ oder ‚wie‘ zu geben. Mittels Deep Learning können Insight Engines zudem aus Erfahrungen und Ergebnissen lernen. Die Basis dafür stellt das Nutzerverhalten dar. Abhängig von vorangegangenen Suchabfragen oder davon, welche Treffer wann, wie oft und in welchem Zusammenhang aufgerufen werden, kategorisieren Insight Engines die Relevanz der Ergebnisse und speichern diese für künftige Abfragen. Oft gesuchte Informationen stellt die Technologie demnach bei ähnlichen oder gleichen Suchabfragen vorrangig zur Verfügung. Abhängig von Fachbereich, Position, Aufgabengebiet und Zugriffsberechtigungen bereitet die Lösung die Ergebnisse in Dashboards auf. Dabei prüft das System bei jeder Abfrage letztere direkt an der Datenquelle, sodass auch kurzfristige Änderungen schnell berücksichtigt werden. Eingesetzt werden solche Insight Engines in zahlreichen Branchen, unter anderem für die Wartung und Instandhaltung.

Autor:
Firma: Mindbreeze GmbH
www.mindbreeze.com

News

- Anzeige -

Weitere Beiträge

Das könnte Sie auch interessieren

KI per Smartphone

Die KI-Software AI.See von Elunic wird häufig zur Prüfung von Oberflächen aus Metall und Kunststoff eingesetzt. Mit einem Starterkit und einem Smartphone können Anwender selbst einen ersten Eindruck einer KI-basierten Qualitätsprüfung gewinnen.

mehr lesen

Künstliche Intelligenz analysiert wertvolle Inhaltsstoffe

Kunststoffmüll ist ein Problem. Weltweit. Der Grund: Kunststoff ist meist verbaut und Teil eines komplexen Produktes: Auto, Kühlschrank, Lederschuh oder Smartphone. Materialanalyse, -trennung und Recycling wären ein Lösungsansatz. Hier setzt das Projekt ‚Digital Lifecycle Record for the Circular Economy‘ – kurz ReCircE – an. Es will mithilfe von künstlicher Intelligenz ein umfassendes Recyclingverfahren entwickeln. Teil des Projektes ist ein digitaler Produktpass. Er soll Transparenz über die gesamte Wertstoffkette schaffen, um die Verwertung von Kunststoffen aus hochentwickelten Produkten zu erleichtern.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.