- Anzeige -
- Anzeige -
Stücklistenmanagement
Wer sucht, der findet
Aus wievielen Teilen ein Produkt auch besteht, liegen Informationen zu den benötigten Komponenten vor, ist es leichter herzustellen. Mit künstlicher Intelligenz und sogenannten Insight Engines können solche Informationen aus unterschiedlichen Systemen zusammengetragen werden.
Bild: ©vegefox.com/stock.adobe.com

Stücklistenmanagement ist ein wichtiger Bestandteil bei der Fertigung von Produkten. Neben Zeichnungen und Arbeitsplänen bilden sie eine Basis des betrieblichen Datenbestandes. Dabei gestaltet es sich nicht immer einfach, alle relevanten Informationen zu den benötigten Komponenten übersichtlich zur Verfügung zu haben. Gerade bei Lieferverzögerungen oder Lieferausfällen benötigter Komponenten ist es wettbewerbsentscheidend, den Überblick zu behalten, ohne wertvolle Ressourcen wie Mitarbeiter unnötig zu binden.

Mit KI suchen

Systeme zur Verwaltung von Stücklisten bzw. Bill of Materials (BOM) bieten zwar Suchfunktionen, jedoch sind diese beschränkt auf die Daten des jeweiligen Systems. Anwender finden so zwar Informationen zu ihrem Suchbegriff, bei weiterführenden Informationen stoßen diese Suchfunktionen oft an ihre Grenzen. Anwender müssen also in unterschiedlichen Programmen suchen, was wiederum mit Zeitaufwand verbunden ist. Intelligente Wissensmanagementlösungen, sogenannte Insight Engines, können bei der Bereitstellung genau dieser benötigten Informationen helfen. Insight Engines kombinieren klassische Suchfunktionen mit künstlicher Intelligenz. Mittels Technologien der Spracherkennung sowie Verfahren des maschinellen Lernens erleichtern sie die Suche nach Informationen. Die Lösung der Mindbreeze GmbH etwa bezieht die Inhalte aus vielen Unternehmensdatenquellen in ihre Recherche ein – unabhängig davon, ob es sich dabei um strukturierte oder unstrukturierte Inhalte handelt. Dadurch können mit einer Suchabfrage die Ergebnisse zu der abgefragten Komponente aus allen Datenquellen extrahiert und dargestellt werden. So erhalten die Anwender zusätzliche relevante Informationen, beispielsweise länderspezifische Restriktionen oder Verfügbarkeiten, ohne eine erneute Rechercheabfrage in einem weiteren System zu starten.

Fragen in natürlicher Sprache

Die Suchabfrage selbst kann in natürlicher Sprache gestellt werden. Dabei sind Insight Engines durch Natural Language Processing (NLP) und Natural Language Understanding (NLU) in der Lage, Phrasen, ganze Sätze oder Fragen korrekt zu verstehen. NLP sorgt dabei für das Verstehen, Übersetzen und Interpretieren der menschlichen Sprache, während mit NLU die Intention beziehungsweise das konkrete Anliegen des Anwenders identifiziert wird. Durch die semantische Analyse der Inhalte und die Verknüpfung von Informationen ist es auch möglich, Antworten auf Fragestellungen mit ‚wo‘, ‚wer‘, ‚was‘, ‚wann‘ oder ‚wie‘ zu geben. Mittels Deep Learning können Insight Engines zudem aus Erfahrungen und Ergebnissen lernen. Die Basis dafür stellt das Nutzerverhalten dar. Abhängig von vorangegangenen Suchabfragen oder davon, welche Treffer wann, wie oft und in welchem Zusammenhang aufgerufen werden, kategorisieren Insight Engines die Relevanz der Ergebnisse und speichern diese für künftige Abfragen. Oft gesuchte Informationen stellt die Technologie demnach bei ähnlichen oder gleichen Suchabfragen vorrangig zur Verfügung. Abhängig von Fachbereich, Position, Aufgabengebiet und Zugriffsberechtigungen bereitet die Lösung die Ergebnisse in Dashboards auf. Dabei prüft das System bei jeder Abfrage letztere direkt an der Datenquelle, sodass auch kurzfristige Änderungen schnell berücksichtigt werden. Eingesetzt werden solche Insight Engines in zahlreichen Branchen, unter anderem für die Wartung und Instandhaltung.

Mindbreeze GmbH
www.mindbreeze.com
- Anzeige -

Das könnte Sie auch Interessieren