KI-gestützte Bilderkennung bei der Homologation

Bild: Elunic AG

Die industrielle Bildverarbeitung nimmt in der Qualitätssicherung einen immer höheren Stellenwert ein. Bei der Bilderkennung hilft künstliche Intelligenz, die Genauigkeit sowie die Produktionsgeschwindigkeit zu steigern – auch bei der Homologation von Kraftfahrzeugen.

In einer weltweiten Umfrage von IFS unter 1400 IT-Entscheidern kam heraus, dass die wesentlichen Anwendungsfelder künstlicher Intelligenz heute in den Bereichen Data Analytics (25 Prozent), Business Intelligence (22 Prozent) und Finanzen (17 Prozent) liegen. Allerdings unterscheiden sich dabei Deutschland, Österreich und Schweiz in einem Punkt deutlich von ihren weltweiten Kollegen: In den drei Ländern steht die Qualitätssicherung mit 22 Prozent an erster Stelle.

Manuell vs. automatisiert

In nahezu allen produzierenden Unternehmen ist die Qualitätssicherung ein fester Bestandteil. Entweder wird diese mit Hilfe verschiedener Inspektoren erledigt oder sie läuft automatisiert ab – beispielsweise mittels klassischer Bilderkennung. Dabei sind fest programmierte Regeln wie etwa Form, Anzahl oder Lage der Objekte entscheidend. Für Erkennungsfehler sorgt es, wenn Licht, Schatten oder Bildhintergründe die Systeme irritieren. Gerade aus diesem Grund erweisen sich die Möglichkeiten, die sich aus der Kombination von Qualitätssicherung und KI ergeben, für viele Unternehmen als besonders spannend, denn die Fehleranfälligkeit wird minimiert und zugleich sind die Systeme heute finanziell erschwinglicher. Die KI orientiert sich, ähnlich wie der Mensch, an gemeinsamen Merkmalen der Objekte und kann durch maschinelles Lernen vergleichbare Ergebnisse erzielen. Dazu genügt es, ausreichend viele Bilder unterschiedlichen Typs auszuwerten und für die KI zu markieren, wo sich der Fehler im Bild befindet. Sie lernt Muster zu erkennen, mit denen sie die Fehler in Zukunft ohne menschliches Zutun identifizieren kann.

Falsch geklebt

Zu Beginn des Jahres steckten tausende Teslas am chinesischen Zoll fest. Der Grund waren fehlerhafte Kennzeichnungen der Autos. Diese ist Teil des Zulassungsprozesses, der sogenannte Homologation, die sich immer wieder als Nadelöhr erweist, wodurch vielen Automobilherstellern Zeit verloren geht. Das betrifft auch die Aufbringung von Aufklebern, die wichtige Daten zum Fahrzeug enthalten. Wenn diese falsch gesetzt sind, muss oft vieles noch einmal manuell geprüft werden. Gerade im Ausland können so weitere Verzögerungen entstehen. Um das zu vermeiden, hat sich ein Automobilhersteller dazu entschieden, mit KI die Qualitätssicherung innerhalb der Homologation zu optimieren.

Seiten: 1 2Auf einer Seite lesen

Anzeige

Anzeige

Das könnte Sie auch Interessieren

Bild: Abat AG
Bild: Abat AG
Forschungskooperation verlängert

Forschungskooperation verlängert

Bild: Abat AG Voneinander und miteinander lernen, gemeinsam an innovativen Ideen für den Markt innerhalb von Forschungskooperationen tätig sein - seit mehreren Jahren schon besteht eine enge Zusammenarbeit zwischen der Bremer Abat AG und der Uni Oldenburg (Abteilung...

Image: Xilinx Inc.
Image: Xilinx Inc.
Adaptive AI Vision

Adaptive AI Vision

Image: Xilinx Inc. Die Kria SOMs ermöglichen den schnellen Einsatz durch Bereitstellung einer End-to-End Lösung auf Board-Ebene mit vorkonfiguriertem Software Stack. Das Kria K26 SOM basiert auf der Zynq UltraScale+ MPSoC Architektur, die einen Quad-Core Arm Cortex...