Qualitätssicherung

Qualitätssicherung KI-gestützte Bilderkennung bei der Homologation Die industrielle Bildverarbeitung nimmt in der Qualitätssicherung einen immer höheren Stellenwert ein. Bei der Bilderkennung hilft künstliche Intelligenz, die Genauigkeit sowie die Produktionsgeschwindigkeit zu steigern – auch bei der Homologation von Kraftfahrzeugen. In einer weltweiten Umfrage von IFS unter 1400 IT-Entscheidern kam heraus, dass die wesentlichen Anwendungsfelder künstlicher Intelligenz […]

Qualitätssicherung

KI-gestützte Bilderkennung
bei der Homologation

Die industrielle Bildverarbeitung nimmt in der Qualitätssicherung einen immer höheren Stellenwert ein. Bei der Bilderkennung hilft künstliche Intelligenz, die Genauigkeit sowie die Produktionsgeschwindigkeit zu steigern – auch bei der Homologation von Kraftfahrzeugen.
In einer weltweiten Umfrage von IFS unter 1400 IT-Entscheidern kam heraus, dass die wesentlichen Anwendungsfelder künstlicher Intelligenz heute in den Bereichen Data Analytics (25 Prozent), Business Intelligence (22 Prozent) und Finanzen (17 Prozent) liegen. Allerdings unterscheiden sich dabei Deutschland, Österreich und Schweiz in einem Punkt deutlich von ihren weltweiten Kollegen: In den drei Ländern steht die Qualitätssicherung mit 22 Prozent an erster Stelle.

Manuell vs. automatisiert

In nahezu allen produzierenden Unternehmen ist die Qualitätssicherung ein fester Bestandteil. Entweder wird diese mit Hilfe verschiedener Inspektoren erledigt oder sie läuft automatisiert ab – beispielsweise mittels klassischer Bilderkennung. Dabei sind fest programmierte Regeln wie etwa Form, Anzahl oder Lage der Objekte entscheidend. Für Erkennungsfehler sorgt es, wenn Licht, Schatten oder Bildhintergründe die Systeme irritieren. Gerade aus diesem Grund erweisen sich die Möglichkeiten, die sich aus der Kombination von Qualitätssicherung und KI ergeben, für viele Unternehmen als besonders spannend, denn die Fehleranfälligkeit wird minimiert und zugleich sind die Systeme heute finanziell erschwinglicher. Die KI orientiert sich, ähnlich wie der Mensch, an gemeinsamen Merkmalen der Objekte und kann durch maschinelles Lernen vergleichbare Ergebnisse erzielen. Dazu genügt es, ausreichend viele Bilder unterschiedlichen Typs auszuwerten und für die KI zu markieren, wo sich der Fehler im Bild befindet. Sie lernt Muster zu erkennen, mit denen sie die Fehler in Zukunft ohne menschliches Zutun identifizieren kann.

Falsch geklebt

Zu Beginn des Jahres steckten tausende Teslas am chinesischen Zoll fest. Der Grund waren fehlerhafte Kennzeichnungen der Autos. Diese ist Teil des Zulassungsprozesses, der sogenannte Homologation, die sich immer wieder als Nadelöhr erweist, wodurch vielen Automobilherstellern Zeit verloren geht. Das betrifft auch die Aufbringung von Aufklebern, die wichtige Daten zum Fahrzeug enthalten. Wenn diese falsch gesetzt sind, muss oft vieles noch einmal manuell geprüft werden. Gerade im Ausland können so weitere Verzögerungen entstehen. Um das zu vermeiden, hat sich ein Automobilhersteller dazu entschieden, mit KI die Qualitätssicherung innerhalb der Homologation zu optimieren.

Seiten: 1 2Auf einer Seite lesen

Autor:
www.elunic.com

News

Fachbeiträge

AI at the Edge

AI at the EdgeProgrammierung von AI-Lösungen unter...

Weitere Fachbeiträge

Leitfaden für Unternehmen

Leitfaden für Unternehmen Zukunftsfähig mit künstlicher Intelligenz Mit ihrem aktuellen Bericht wollen die Experten der Plattform 'Lernende Systeme' Unternehmen einen Leitfaden an die Hand geben und zeigen, wie sie KI systematisch nutzen können - veranschaulicht von...

Was ist künstliche Intelligenz?

Was ist künstliche Intelligenz? Anspruchsvolle Probleme einfach per KI lösen Kaum eine Digitalstrategie kommt heutzutage ohne künstliche Intelligenz aus. Doch was zeichnet eine KI aus und wo kommt sie zum Einsatz? Künstliche Intelligenz ist ein Zweig der Informatik,...

Machine Learning kann Liquidität steigern

Volle Auftragsbücher und trotzdem insolvent – dieses Schicksal kann selbst stabile Unternehmen ereilen, wenn ihre Großkunden nicht pünktlich zahlen. Dabei lässt sich die Liquidität sichern, wenn rechtzeitig die richtigen Infos bereitstehen. Machine Learning macht genau das jetzt automatisiert möglich.

Der digitale Zwilling im Fahrzeugbau

Wie mit Daten die Entwicklung beschleunigt werden kann Der digitale Zwilling im Fahrzeugbau Fahrzeugbauer erhalten Erkenntnisse über die Qualität und Fahrverhalten neuer Automodelle unter Realbedingungen. Die dabei gesammelten Daten bilden jedoch immer häufiger die...

RPA trifft künstliche Intelligenz

Intelligent Automation steht für eine neue Stufe in der Zusammenarbeit von Mensch und Maschine. Smarte Automatisierung verändert mithilfe von KI und Analytics die Geschäftsprozesse in Unternehmen grundlegend. Für die aktuelle Studie hat Deloitte weltweit Unternehmen befragt: Wie skalieren sie ihre Automatisierungsstrategie erfolgreich? Und sind sie bereit, menschliche und maschinelle Intelligenz zu kombinieren, um das volle Potential der neuen Technologie zu schöpfen?

Software-Roboter im Internet der Dinge

Künstliche Intelligenz und das Internet of Things sind für sich alleine schon faszinierende Technologien. Werden beide kombiniert, eröffnet dies neue Anwendungszenarien für die Optimierung von Geschäftsprozessen. Dabei sammelt das IoT die Daten, während die KI sie verarbeitet, um ihnen Bedeutung zu verleihen.

Anomaly Detection

Anomaly Detection Anomalien einfach und zielsicher mit wenigen Bildern erkennen Deep-Learning-Verfahren werden sowohl für die Identifikation von Objekten als auch für die Detektion von Fehlern eingesetzt. Mit der Anomaly Detection in Halcon 19.11 lassen sich nun auch...

Mehr Speicher für mehr Daten

Autonomes Fahren Mehr Speicher für mehr Daten Künstliche Intelligenz spielt bei der Zukunft der Mobilität eine große Rolle, da Fahrzeuge immer abhängiger von immer mehr Daten werden. Dies erfordert neue Speicherlösungen, die es ermöglichen, Daten nahtlos zwischen...

News

→ MEHR