Sehen, was der Mensch nicht sieht

Qualitätskontrolle

Sehen, was der
Mensch nicht sieht

Bild: Intel GmbH Munich

Fehlerhafte Schweißnähte, Kratzer auf Oberflächen oder Risse in Tabletten – viele
Industrieunternehmen setzen bei der Qualitätskontrolle und Erkennung von Fehlern in der Fertigung auf automatisierte Bildverarbeitung. Auch der Chiphersteller Intel setzt auf Machine Vision, zum Beispiel in der Wafer-Fertigung.

Die digitale Fabrik steht für vernetzte und nahezu selbststeuernde Produktionsabläufe mittels intelligenter Maschinen und Werkstücke. Produktionsanlagen melden über Sensoren permanent ihren aktuellen Status. Durch intelligentes Monitoring der Fertigungsdaten können Unternehmen nahezu in Echtzeit auf veränderte Rahmenbedingungen reagieren und ihre Produktion entsprechend steuern und optimieren. Ein wichtiger Baustein der intelligenten Produktion ist Machine Vision, also die automatisierte Bildverarbeitung. Systeme zur Bildverarbeitung basieren auf Industriekameras mit digitalen Sensoren und einer speziellen Optik zur Bilderfassung sowie einer Kombination aus Hardware und Software. Sie extrahieren, verarbeiten und analysieren mit Hilfe von Algorithmen Daten aus digitalen Bildern. Die Einsatzszenarien der Bildverarbeitung sind vielfältig und reichen von der Identifikation bestimmter Werkstücke bis hin zur Prozess- oder Qualitätskontrolle – wo Machine Vision auch beim Chiphersteller Intel zum Einsatz kommt. Im Rahmen der Qualitätskontrolle erkennen enstprechende Systeme Fehler, optische Mängel, Verschmutzungen sowie sonstige Unregelmäßigkeiten an den Produkten. Sie klassifizieren die Mängel und geben diese an die übergeordnete Anlagensteuerung weiter, damit diese die fehlerhaften Teile nicht verwendet oder zur Nachbearbeitung weiterleitet. Intel setzt die industrielle Bildverarbeitung beispielsweise in den eigenen Fabriken bei der Wafer-Fertigung ein, um Mängel zu erkennen.

Dem Menschen überlegen

Die automatisierte Bildverarbeitung ist menschlichen Prüfern bei immer wiederkehrenden Kontrollaufgaben überlegen: Die Methode ist schneller, objektiver und braucht keine Schichtwechsel. Durch den Einsatz von Machine Vision an der Produktionslinie können Tausende Teile pro Minute rund um die Uhr geprüft werden- mit gleichbleibenden und zuverlässigen Ergebnissen. Zudem ist die Technologie in der Lage, bei richtiger Auflösung und Optik Details zu erkennen, die das menschliche Auge nicht sieht. Manuelle Prozesse sind dafür oft zu aufwendig und fehleranfällig. Etwa sechs bis neun Monate kann es dauern, bis die Mitarbeiter so weit geschult sind, dass sie Fehler manuell mit einer Genauigkeit von bis zu 90 Prozent klassifizieren können. Und selbst nach Abschluss des Trainings hält ein erfahrener Bediener im Durchschnitt lediglich eine Genauigkeit von 70 bis 85 Prozent ein. Weiterer Vorteil von Machine Vision-Systemen: Da der physische Kontakt mit den Prüfteilen entfällt, besteht nicht die Gefahr einer Beschädigung der Werkstücke. Bei Intel lassen sich beispielsweise auch Kontaminationen von Reinräumen durch Menschen vermeiden.

Integriert in die Linie

Systeme für die automatisierte Bildverarbeitung integrieren Industriekameras mit digitalen Sensoren und einer speziellen Optik zur Bilderfassung, leistungsfähige Rechner für die Bildverarbeitung über Algorithmen und Kommunikationstechnologien zur Vernetzung der verschiedenen Komponenten einer industriellen Anlage. Denn die Systeme werden direkt in die Fertigungslinien integriert und tauschen Daten über Industrial Ethernet-Protokolle wie Profinet oder EtherNet/IP aus. Ein wichtiges Bindeglied zwischen den Kameras und den Rechnern, die die Algorithmen zur Bildverarbeitung ausführen, sind so genannte Framegrabber. Sie erfassen die Bilddaten der Kameras in Standard-Formaten wie DVI, HDMI oder Camera Link oder sie passen sich an ein proprietäres Datenformat der Kamera an. Zudem verarbeiten sie die Daten, überführen sie in ein Zielformat und übertragen sie an den Industriecomputer weiter, auf dem die Bildverarbeitung über Algorithmen erfolgt.

Seiten: 1 2Auf einer Seite lesen

Anzeige

Anzeige

Das könnte Sie auch Interessieren

Bild: Abat AG
Bild: Abat AG
Forschungskooperation verlängert

Forschungskooperation verlängert

Bild: Abat AG Voneinander und miteinander lernen, gemeinsam an innovativen Ideen für den Markt innerhalb von Forschungskooperationen tätig sein - seit mehreren Jahren schon besteht eine enge Zusammenarbeit zwischen der Bremer Abat AG und der Uni Oldenburg (Abteilung...

Image: Xilinx Inc.
Image: Xilinx Inc.
Adaptive AI Vision

Adaptive AI Vision

Image: Xilinx Inc. Die Kria SOMs ermöglichen den schnellen Einsatz durch Bereitstellung einer End-to-End Lösung auf Board-Ebene mit vorkonfiguriertem Software Stack. Das Kria K26 SOM basiert auf der Zynq UltraScale+ MPSoC Architektur, die einen Quad-Core Arm Cortex...