Künstliche Intelligenz und Maschinelles Lernen für die Produktion

Künstliche Intelligenz und Maschinelles Lernen für die Produktion Wichtiges Kennzeichen von Industrie 4.0 ist die durchgängige Vernetzung und Durchdringung aller Komponenten der Fabrik sowie kompletter Wertschöpfungsketten mit Sensorik, eingebetteten Systemen und Kommunikationstechnik. Dadurch fallen von der Planung der zu fertigenden Produkte und Produktionsmittel über ihre Herstellung bis zur Nutzung der Produkte große Mengen an Daten […]

Künstliche Intelligenz und
Maschinelles Lernen für die Produktion

Wichtiges Kennzeichen von Industrie 4.0 ist die durchgängige Vernetzung und Durchdringung aller Komponenten der Fabrik sowie kompletter Wertschöpfungsketten mit Sensorik, eingebetteten Systemen und Kommunikationstechnik. Dadurch fallen von der Planung der zu fertigenden Produkte und Produktionsmittel über ihre Herstellung bis zur Nutzung der Produkte große Mengen an Daten an, die meist maschinell erzeugt werden. Diese Daten sind Grundlage für moderne und mächtige Analyse- und Auswerteverfahren, die heute als ‚Künstliche Intelligenz‘ (KI) bezeichnet werden.

Entweder stammen die Daten aus den Maschinensteuerungen, aus der existierenden Sensorik der Maschine und/oder aus nachgerüsteten intelligenten Sensoren. Jeder Anwendungsfall erfordert seine spezifischen Daten. Also ist festzulegen, welche Granularität der Daten für eine bestimmte Aufgabe erforderlich ist, wie Daten aus verschiedenen Quellen passgenau zusammengeführt werden können und in welchem Format die Daten übertragen und gespeichert werden. Zu berücksichtigen sind außerdem die Themen Datensicherheit und Datenschutz, denn mehr Vernetzung bedeutet höhere Anfälligkeit gegen Cyberangriffe.

In Produktionsprozessen wird Maschinelles Lernen eingesetzt, um ganz allgemein „Wissen“ aus „Erfahrung“ zu erzeugen – Lernalgorithmen entwickeln aus möglichst repräsentativen Beispieldaten ein komplexes Modell. Dieses Modell kann anschließend auf neue und unbekannte Daten derselben Art angewendet werden. Immer, wenn Prozesse zu kompliziert sind, um sie analytisch zu beschreiben, aber genügend viele Beispieldaten verfügbar sind, z.B. Sensordaten oder Bilder, bietet sich Maschinelles Lernen an. Die Modelle werden mit dem Datenstrom aus dem laufenden Betrieb abgeglichen und erlauben letztlich Vorhersagen oder Empfehlungen und Entscheidungen.

Wo werden zukünftig die anfallenden Daten verarbeitet oder die Modelle gelernt? Aktuell zeichnet sich ab, dass zukünftig „Edge-Rechenzentren“ diese Aufgabe übernehmen. Unter Edge-Computing versteht man, Rechenleistung, Software-Anwendungen, Datenverarbeitung oder Dienste unmittelbar an die logische Randstelle eines Netzwerks zu verlagern, z.B. einer Linie oder einer kompletten Fabrik. Edge-Rechenzentren, untereinander verbunden zu einer Cloud-Infrastruktur, sind damit skalierbar und bieten auch mittelständischen Unternehmen die Möglichkeiten, Cloud-Technologien zu nutzen, ohne in eine eigene Infrastruktur investieren zu müssen.

Autor:
www.iitb.fraunhofer.de

News

Fachbeiträge

AI at the Edge

AI at the EdgeProgrammierung von AI-Lösungen unter...

Weitere Fachbeiträge

Leitfaden für Unternehmen

Leitfaden für Unternehmen Zukunftsfähig mit künstlicher Intelligenz Mit ihrem aktuellen Bericht wollen die Experten der Plattform 'Lernende Systeme' Unternehmen einen Leitfaden an die Hand geben und zeigen, wie sie KI systematisch nutzen können - veranschaulicht von...

Was ist künstliche Intelligenz?

Was ist künstliche Intelligenz? Anspruchsvolle Probleme einfach per KI lösen Kaum eine Digitalstrategie kommt heutzutage ohne künstliche Intelligenz aus. Doch was zeichnet eine KI aus und wo kommt sie zum Einsatz? Künstliche Intelligenz ist ein Zweig der Informatik,...

Machine Learning kann Liquidität steigern

Volle Auftragsbücher und trotzdem insolvent – dieses Schicksal kann selbst stabile Unternehmen ereilen, wenn ihre Großkunden nicht pünktlich zahlen. Dabei lässt sich die Liquidität sichern, wenn rechtzeitig die richtigen Infos bereitstehen. Machine Learning macht genau das jetzt automatisiert möglich.

Der digitale Zwilling im Fahrzeugbau

Wie mit Daten die Entwicklung beschleunigt werden kann Der digitale Zwilling im Fahrzeugbau Fahrzeugbauer erhalten Erkenntnisse über die Qualität und Fahrverhalten neuer Automodelle unter Realbedingungen. Die dabei gesammelten Daten bilden jedoch immer häufiger die...

RPA trifft künstliche Intelligenz

Intelligent Automation steht für eine neue Stufe in der Zusammenarbeit von Mensch und Maschine. Smarte Automatisierung verändert mithilfe von KI und Analytics die Geschäftsprozesse in Unternehmen grundlegend. Für die aktuelle Studie hat Deloitte weltweit Unternehmen befragt: Wie skalieren sie ihre Automatisierungsstrategie erfolgreich? Und sind sie bereit, menschliche und maschinelle Intelligenz zu kombinieren, um das volle Potential der neuen Technologie zu schöpfen?

Software-Roboter im Internet der Dinge

Künstliche Intelligenz und das Internet of Things sind für sich alleine schon faszinierende Technologien. Werden beide kombiniert, eröffnet dies neue Anwendungszenarien für die Optimierung von Geschäftsprozessen. Dabei sammelt das IoT die Daten, während die KI sie verarbeitet, um ihnen Bedeutung zu verleihen.

Anomaly Detection

Anomaly Detection Anomalien einfach und zielsicher mit wenigen Bildern erkennen Deep-Learning-Verfahren werden sowohl für die Identifikation von Objekten als auch für die Detektion von Fehlern eingesetzt. Mit der Anomaly Detection in Halcon 19.11 lassen sich nun auch...

Mehr Speicher für mehr Daten

Autonomes Fahren Mehr Speicher für mehr Daten Künstliche Intelligenz spielt bei der Zukunft der Mobilität eine große Rolle, da Fahrzeuge immer abhängiger von immer mehr Daten werden. Dies erfordert neue Speicherlösungen, die es ermöglichen, Daten nahtlos zwischen...

News

→ MEHR