- Anzeige -
- Anzeige -
Selbstlernende Algorithmen zur Maschinensteuerung
Mit maschinellem Lernen vorherzusagen, dass ein wichtiges Teil einer Fertigungsanlage ausfallgefährdet ist oder unerwünschte Abweichungen aufgetreten sind - solche Anwendungen auf Basis von KI gibt es bereits. Dafür lassen sich selbstlernende Algorithmen ganz nah an der Maschine integrieren.

Bild: Omron Europe B.V.

Um Investitionsausgaben zu maximieren, ist operative Exzellenz erforderlich. Gleichzeitig stehen die Hersteller jedoch vor der Herausforderung, sich von traditionellen High-Volume-Low-Mix-Produktionsprozessen zu komplexeren High-Mix-Low-Volume-Produktionsprozessen zu bewegen, wobei die Nachfrage direkt mit der Produktion verbunden ist. Ein vergleichsweise neuer Baustein für operative Exzellenz ist die Implementierung von ‚KI at the Edge‘, also auf Maschinenebene. Grundlagen dafür sind eine flexible und autonome Produktionsunterstützung sowie IoT-Automatisierungslösungen von der Datenerfassung bis zur Produktion für eine nahtlose Integration von IT- und OT-Welten.

Was machen die Algorithmen?

Vereinfacht gesprochen wurde für die maschinennahe Integration von KI-Technologie ein Auswertungsansatz so erweitert, dass er sich innerhalb gegebener Rahmenbedingen selbst optimiert. Da dies vom Steuerungshersteller Omron in eine echtzeitfähige Form programmiert wurde, kann von einem selbstlernenden maschinennahen Algorithmus gesprochen werden. Theoretisch lassen sich Auswertungen auch nach der Datenerfassung, dem sogenannten Post-Event, mithilfe einer Software durchführen. Jedoch sind dann auf dieser Ebene der Produktion das defekte Erzeugniss oder der nahende Maschinenstillstand schon passiert. Eine Auswertung auf Maschinenebene in Echtzeit befähigt die Maschine, sofort auf Anomalien zu reagieren.

Edge und Cloud in der Fertigung

Doch was bedeutet eigentlich ‚KI at the Edge‘? Das auf kleinen Daten basierende maschinelle Lernen lässt sich in diesem Zusammenhang als spinale KI bezeichnen. Auf dieser Ebene werden Produktionslinien und Geräte mit Echtzeitsensoren überwacht und die Daten werden mit hoher Geschwindigkeit gesammelt und verarbeitet, um Anomalien schnell zu erkennen. Die Verarbeitung großer Datenmengen in der Cloud kann als zerebrale KI bezeichnet werden. Diese erfordert offene und sichere Standards wie das MQTT-Protokoll und den Kommunikationsstandard OPC UA für die Umwandlung von Maschinen- und Anlagendaten in Informationen. Während sich die Cloud am besten für Big-Data-Verarbeitung und Langzeitanalysen eignet, ist der ‚KI at the Edge-‚Ansatz eher für Echtzeitanwendungen geeignet. Dieser Ansatz bietet schnellere Reaktionszeiten, um die Datenanalyse auf Produktionsebene nutzen zu können, etwa zur Echtzeit-Optimierung einer Maschine.

Seiten: 1 2Auf einer Seite lesen

- Anzeige -
- Anzeige -

Das könnte Sie auch Interessieren

Bild: NET GmbH
Bild: NET GmbH
Roadshow von NET im April

Roadshow von NET im April

Bild: NET GmbH Die NET GmbH bietet vom 15. bis zum 22. April deutschlandweit Ein-Tages-Workshops an und gibt Einblicke in die Smart-Vision-Technologien der Firma. Vorgestellt werden Trends zu intelligenten Kameras (inkl. Programmierung), Künstliche Intelligenz und...

Bild: Kontron Europe GmbHBild 1 | Die kompakte AI-Plattform erhöht dank einer Google Coral Edge TPU, die bis zu 4 TOPS (trillion operations per second) leistet, die Bilderfassung von Edge Komponenten auf über 30fps.
Bild: Kontron Europe GmbHBild 1 | Die kompakte AI-Plattform erhöht dank einer Google Coral Edge TPU, die bis zu 4 TOPS (trillion operations per second) leistet, die Bilderfassung von Edge Komponenten auf über 30fps.
Industrielle AI-Geräteplattform für Edge-Komponenten

Industrielle AI-Geräteplattform für Edge-Komponenten

Bild 1 | Die kompakte AI-Plattform erhöht dank einer Google Coral Edge TPU, die bis zu 4 TOPS (trillion operations per second) leistet, die Bilderfassung von Edge Komponenten auf über 30fps. - Bild: Kontron Europe GmbH Die NXP-basierte AI-Plattform ist für den Betrieb...

Bild: Cincoze Germany
Bild: Cincoze Germany
Embedded GPU Computer

Embedded GPU Computer

Bild: Cincoze Germany The embedded GPU computer GM-1000 by Cincoze incorporates an Intel 9th/8th generation workstation-grade CPU and an MXM 3.1 Type A/B GPU module to accelerate compute-intensive applications and make it perfect for machine learning, Al, and highend...