- Anzeige -
- Anzeige -
Lesedauer: min
ERP-Systeme als Anlaufstelle für KI-Applikationen

Nov 29, 2019 | Industrielle Produktion

ERP-Systeme als Anlaufstelle für KI-Applikationen

Kontext macht aus Daten Information

Bild: ©phonlamaiphoto/stock.adobe.com

Selbst wenn künstliche Intelligenz von einer Nischenanwendung zur Normalität wird, ändert sich an der Rolle des führenden ERP-Systems nicht viel. Auch in diesen Szenarien werden
Datendrehscheiben gebraucht – etwa um der KI-Applikation Metadaten bereitzustellen.

Eine Voraussetzung für die smarte Fabrik ist die Anbindung vieler Drittsysteme an die zentrale Geschäftslösung. Denn jeder Ablauf ist nur so effizient wie sein ineffizientester Teilprozess. Verzögert ein manueller Datenaustausch den Ablauf, sind die Geschwindigkeitsvorteile der vernetzten Maschinen womöglich dahin. Um das zu vermeiden und alle an der Wertschöpfungskette beteiligten Systeme anbinden zu können, haben sich viele ERP-Systeme in den vergangenen Jahren zu einer werksnahen Informationsdrehscheibe weiterentwickelt. Eine Aufgabe, die mit der zu erwartenden Verbreitung von KI-Technologie im Fabrikumfeld noch einmal an Bedeutung gewinnen dürfte. Denn auch eine KI-Applikation ist auf Metadaten und Kontext angewiesen, um sinnvolle Ergebnisse produzieren zu können.

Zeitfenster sind zu klein

Auch wenn die Forschung noch weit von der Entwicklung einer starken KI entfernt ist, gibt es bereits heute nützliche Einsatzmöglichkeiten im Fertigungsumfeld, etwa die vorausschauende Wartung. Schon zu Beginn der Industrie-4.0-Bewegung zählte Predictive Maintenance zu den vielversprechendsten Szenarien in der vernetzten Fabrik. Nicht wenige dieser Anwendungen wurden seitdem implementiert – zeigten jedoch auch die unerwarteten Schwierigkeiten in der Praxis auf. Traditionell basiert die präventive Erkennung von Fehlern auf Schwellenwerten: Nähert sich etwa die Temperatur der Anlage einem kritischen Bereich, wird eine Warnung ausgelöst und ein Techniker zur vorausschauenden Wartung entsendet. In der Praxis ist jedoch häufig das Zeitfenster nach Ausgabe der Warnung für die Service-Techniker zu klein, um das Eintreten des Fehlers tatsächlich noch zu verhindern. Zudem lässt sich ein Schwellenwert erst definieren, wenn die Parameter bekannt sind, die auf einen Maschinenausfall hinweisen. In der Realität ist eine Störung jedoch häufig nicht nur mit einigen wenigen Variablen, sondern vielmehr mit komplexen Störungsmustern verbunden. Dabei können auch Einflüsse eine Rolle spielen, die noch keinem in den Sinn kamen – beispielsweise der Luftdruck der Arbeitsumgebung. Solche Störungsmuster zu identifizieren, stellt aufgrund der hohen Komplexität eine Herausforderung dar: Denn mit jedem weiteren Parameter, der in die Beobachtung miteinbezogen wird, steigt die Zahl der Möglichkeiten exponentiell an, wie dieser mit den übrigen Werten zusammenspielen kann. Hier spielt künstliche Intelligenz ihr Potenzial aus.

Neuronale Netze entdecken Muster

Die Grundlage einer KI-Analyse stellen die historischen Betriebsdaten einer Maschine dar. Um aussagekräftige Ergebnisse zu erziehen, sollten diese mindestens ein Jahr zurückreichen, besser noch zwei bis drei Jahre. Je länger die Daten zurückreichen, desto wahrscheinlicher ist es, dass ein bestimmter Fehler aufgetreten ist und damit in den erfassten Daten aufgezeichnet wurde. Die Analyse der Daten erfolgt anschließend mit neuronalen Netzen auf Basis der sogenannten Long-short-term-memory-Technik. Damit wird eine Art Erinnerungsvermögen für das neuronale Netz erzeugt. Anschließend wandern die historischen Daten als Trainingsdaten in das neuronale Netz – das daraus ein Verständnis entwickelt, in welcher Kombination die Parameter typischerweise kritisch sind. Wiesen etwa ein Großteil der historischen Störungen bei mindestens 25 Parametern ungewöhnliche Werte auf, könnte es sich bei einer ähnlichen Menge an ungewöhnlichen Werten wahrscheinlich ebenfalls um eine Störung handeln, selbst wenn völlig andere Parameter involviert sind als bei den Störungen in den historischen Daten.

Seiten: 1 2Auf einer Seite lesen

Autor:
Firma:

News

- Anzeige -

Weitere Beiträge

Das könnte Sie auch interessieren

Studie von VDE und Bertelsmann Stiftung: KI-Ethik messbar machen

In einer neuen Studie zeigen die Technologieorganisation VDE und die Bertelsmann Stiftung, wie sich Ethikprinzipien für künstliche Intelligenz (KI) in die Praxis bringen lassen. Zwar gibt es eine Vielzahl an Initiativen, die ethische Richtlinien für die Gestaltung von KI veröffentlicht haben, allerdings bis dato kaum Lösungen für deren praktische Umsetzung. Genau hier setzt der VDE als Initiator und Leiter der ‚AI Ethics Impact Group‘ gemeinsam mit der Bertelsmann Stiftung an.

mehr lesen

KI in der medizinischen Diagnostik

Das Robotik Startup Robominds hat in Reaktion auf die aktuelle Corona-Pandemie eine Lösung entwickelt, die Roboterarme befähigt, Proben und Reagenzien für die medizinische Diagnostik vor zu sortieren. Auf Basis künstlicher Intelligenz erkennt das Soft-und Hardwaresystem Robobrain Position und Farbe der Probenröhrchen und kann diese ohne vorheriges Einlernen voll automatisiert vor- und einsortieren.

mehr lesen

Künstliche Intelligenz für ‚Beyond 5G‘

Während viele europäische Staaten gerade dabei sind, den Mobilfunk der 5. Generation aufzubauen, arbeitet die Forschung bereits an seiner Optimierung. Denn obwohl 5G seinen Vorgängern weit überlegen ist, hat auch der neueste Mobilfunkstandard noch Verbesserungspotenzial: Besonders in urbanen Gebieten, in denen ein direkter Sichtkontakt zwischen Sender und Empfänger erschwert ist, funktioniert die Funkverbindung oftmals noch nicht zuverlässig. In dem kürzlich gestarteten EU-Projekt Ariadne erforschen nun elf europäische Partner, wie sich durch die Nutzung von hohen Frequenzbändern und künstlicher Intelligenz eine fortschrittliche Systemarchitektur für »Beyond 5G« entwickeln lässt.

mehr lesen

Universität Stuttgart und IBM treiben KI-Forschung in Deutschland voran

IBM (NYSE: IBM) und die Universität Stuttgart gaben bekannt, dass die Universität als erste Institution in Europa dem AI Horizons Network beitritt, um im Rahmen einer mehrjährigen Kooperation die KI-Forschung zur Interaktion von Sprache und Wissen voranzutreiben. Das AI Horizons Network ist ein weltweites Netzwerk von Forschenden und Promovierenden, das von IBM ins Leben gerufen wurde, um in einer Reihe von Forschungsprojekten und Experimenten die Anwendung von künstlicher Intelligenz, maschinellem Lernen, maschineller Sprachverarbeitung und verwandter Technologien gemeinsam voranzubringen. Zum jetzigen Zeitpunkt sind weltweit bereits über 80 wissenschaftliche Arbeiten aus dem Netzwerk veröffentlicht worden.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.