- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: min
Reinforced Learning in der Fertigungsplanung

Nov 27, 2019 | Industrielle Produktion

Wie geht Reinforcement Learning?

Beim Reinforcement Learning soll einem Computerprogramm ein Verhalten antrainiert werden, das dem Verhalten eines Menschen entsprechen könnte. Es funktioniert über Belohnungen und Bestrafungen je nachdem welche Handlungsweise das Programm aus verschiedenen Möglichkeiten wählt. Dadurch soll das Programm lernen, wie es sich in bestimmten Situationen verhalten sollte, ohne dass man ihm direkt für jede Situation sagen muss, wie es reagieren soll. Die Vorgehensweise kann mit dem Erziehen eines Hundes verglichen werden: Immer wenn das Tier etwas richtig gemacht hat, bekommt es ein Leckerli – wenn nicht, dann nicht. Der Hund wird folglich versuchen, so viel wie möglich richtig zu machen, um möglichst viele Leckerlis zu bekommen. Auf ähnliche Weise funktioniert Reinforcement Learning und nähert sich so sukzessive einem Optimum an – nur eben ohne Leckerli.

Anwendung in der Praxis

Dieses Vorgehen einer intelligenten Fertigungsplanung bringt enorme Vorteile mit sich. Faktoren wie Aufträge, Arbeitsplätze, Transportwege, Rüstzeiten, begrenzte Ressourcen sowie Personalverfügbarkeiten werden bereits bei der Entscheidungsfindung berücksichtigt und führen zu einer globalen Optimierung. Auf diese Weise werden Rüstzeiten minimiert, Durchlaufzeiten gekürzt und Termintreue erhöht. Bei Einsatz einer Lösung wie der kognitiven Planung und Optimierung von MPDV kann der Anwender zudem selbst modellieren, welche planungsrelevanten Faktoren von der künstlichen Intelligenz berücksichtigt werden sollen. So können Personalkosten minimiert oder eine Materialverfügbarkeitsprüfung durchgeführt werden.

Vergleich heutiger Planungsalgorithmen mit der KI-basierten kognitiven Planung (Bild: Aimes GmbH)

Beispiel Engpassressource

Ein fiktives Praxisbeispiel soll den Nutzen verdeutlichen: Bei einem Fertigungsunternehmen befindet sich in der Mitte des Fertigungsprozesses ein Ofen, der den Engpass der gesamten Fertigung darstellt. Ziel der Fertigungsplanung ist es, den Ofen selbst optimal auszulasten, sowie die vor- und nachgelagerten Prozessschritte optimal an dem Engpass auszurichten. Die zur Planung eingesetzte KI wird bei der Suche der optimalen Planungsentscheidungen früh erkennen, dass der Ofen den Engpass der Fertigung darstellt. Sie wird diese Erkenntnis bei allen späteren Entscheidungsfindungen berücksichtigen. Alle weiteren Planungsprüfungen werden den Ofen bestmöglich auslasten und anschließend die vor- und nachgelagerten Fertigungsbereiche verbessern.

Seiten: 1 2Auf einer Seite lesen

Autor:
Firma:

News

Weitere Beiträge

Das könnte Sie auch interessieren

KI-Vorreiter führen ihre KI-Initiativen trotz Corona unbeirrt fort

Unternehmen, die beim Thema künstliche Intelligenz (KI) führend sind, zeigen sich von der Corona-Pandemie unbeeindruckt: 78 Prozent der KI-Vorreiter unter den Unternehmen führen ihre KI-Initiativen wie vor der Pandemie fort, 21 Prozent haben deren Umsetzung sogar beschleunigt. Unter den Unternehmen, die KI noch nicht skalierbar einsetzen, fahren hingegen 43 Prozent ihrer Investitionen zurück und 16 Prozent haben ihre KI-Initiativen eingestellt. In Deutschland haben 44 Prozent der Unternehmen keine Änderungen vorgenommen, 8 Prozent die Geschwindigkeit erhöht und 19 Prozent ihre Initiativen aufgrund der unsicheren Lage eingestellt. Weiterhin verzeichnen Unternehmen mit skalierbaren KI-Anwendungen messbare Erfolge bei der Absatzsteigerung und der Reduzierung von Sicherheitsrisiken und Kundenbeschwerden. Zu diesen und weiteren Ergebnissen kommt die Studie ‚The AI Powered Enterprise: Unlocking the potential of AI at scale‘, für die 950 Unternehmen aus elf Ländern und elf Branchen befragt wurden.

mehr lesen

KI übernimmt Arbeit von Software-Ingenieuren

Für selbstadaptive Software gibt es heute unzählige Anwendungsmöglichkeiten. Doch die Entwicklung der Systeme stellt Software-Ingenieure vor neue Herausforderungen. Wissenschaftler vom Softwaretechnik-Institut Paluno an der Universität Duisburg-Essen (UDE) haben jetzt vielversprechende Ergebnisse mit neuartigen Verfahren der künstlichen Intelligenz (KI) erzielt, die den Entwicklungsprozess selbstadaptiver Systeme automatisieren.

mehr lesen

Wie wird künstliche Intelligenz zum Standardwerkzeug für den Mittelstand?

Das Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU möchte zusammen mit den produzierenden Unternehmen des Mittelstands die entscheidende Barriere für die Anwendung künstlicher Intelligenz überwinden: Die Köpfe sind überzeugt, aber die Umgestaltung der Produktionsanlagen und -prozesse in den Fabriken stockt. Deshalb arbeiten die Forscherinnen und Forscher an einem systematischen Leitfaden, mit dem KI zum Standardwerkzeug werden soll, das bessere Produkte mit geringerem Ressourceneinsatz ermöglicht. Erste Ergebnisse sind vielversprechend.

mehr lesen

Leistungsstarkes KI-System am KIT installiert

Als ein Werkzeug der Spitzenforschung ist künstliche Intelligenz (KI) heute unentbehrlich. Für einen erfolgreichen Einsatz – ob in der Energieforschung oder bei der Entwicklung neuer Materialien – wird dabei neben den Algorithmen zunehmend auch spezialisierte Hardware zu einem immer wichtigeren Faktor. Das Karlsruher Institut für Technologie (KIT) hat nun als erster Standort in Europa das neuartige KI-System NVIDIA DGX A100 in Betrieb genommen. Angeschafft wurde es aus Mitteln der Helmholtz Artificial Intelligence Cooperation Unit (HAICU).

mehr lesen

Machine Learning einfach gemacht

Seit einigen Jahren schon werden die Fantasien der Ingenieure und Anlagenbauer beflügelt durch die Möglichkeiten von KI- und Machine-Learning-Algorithmen. Klingt zwar zunächst sehr kompliziert, bietet aber konkrete Vorteile für die smarte Fabrik. Maschinen und Anlagen bzw. Produktionsprozesse erzeugen kontinuierlich Daten. Erfolgreich werden zukünftig Unternehmen sein, denen es gelingt, Mehrwert aus diesen Daten zu generieren.

mehr lesen

Die vernetze Fabrik für die Zukunft

Krisen decken Schwachstellen auf. In der Corona-Pandemie zeigt sich der Wert der vernetzten Produktion und Logistik. Das Internet der Dinge (Internet of Things, kurz IoT) hilft der Industrie, auf Ausfälle flexibler als bisher zu reagieren, denn in Echtzeit lassen sich Auslastung und Zustand jeder einzelnen Maschine verfolgen, und es herrscht Transparenz über die Lieferkette. Die Bosch-Gruppe, eines der weltweit führenden Technologie- und Dienstleistungsunternehmen, hat damit positive Erfahrungen gemacht.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.