Mechanismus für gute Ergebnisse
Wie können wir der KI vertrauen?
Unternehmen setzen zunehmend auf KI oder planen, dies künftig zu tun. Doch die große Euphorie bleibt in der Industrie aus guten Gründen noch aus. Zum einen fehlt die kritische Masse an Einsatzszenarien, weswegen Unsicherheit besteht, welche Handlungsfelder nachhaltige Erfolge versprechen. Zum anderen ist die Frage der Zuverlässigkeit zu klären, also wie valide KI-generierte Ergebnisse wirklich sind. Im Folgenden geht es um die Mechanismen, die gute Ergebnisse sicherstellen helfen.

Alarmsystem für Online-Banking (siehe ganz links)
Alarmsystem für Online-Banking (siehe ganz links)Bild: U.Coester

Bevor KI eine breite Akzeptanz in Unternehmen und Gesellschaft erfährt, müssen einige Herausforderungen gelöst werden. Doch letztendlich wird die Vertrauenswürdigkeit der KI-Technologie als Schlüssel für deren Erfolg gesehen. Aber wie kann diese aufgebaut werden? Ausgehend von der Definition, dass Vertrauen als die subjektive Überzeugung von der Richtigkeit einer Aussage und von Handlungen zu verstehen ist, kann ein KI-System generell als vertrauenswürdig eingestuft werden, wenn es sich für den vorgesehenen Zweck immer wie erwartet verhält. Daraus lässt sich folgern, dass Vertrauenswürdigkeit nachweisbar ist. In Bezug auf KI sind somit grundlegend folgende Faktoren relevant, die im Weiteren erläutert werden:

  • Die Eingangsdaten der KI müssen eine hohe Qualität für den Anwendungsfall aufweisen.
  • Die IT-Anwendung und das KI-System sind von KI- und Anwendungsexperten konzipiert sowie manipulationssicher und vertrauenswürdig umgesetzt.
  • Ergebnisse nachzuvollziehen wird ermöglicht.
  • Bei der Entwicklung und Anwendung werden jeweils ethische Grundsätze eingehalten.

Qualität der Eingangsdaten

Grundsätzlich basiert die Entwicklung und im Weiteren der Einsatz von KI-basierten Anwendungen auf Daten – etwa für das Trainieren des KI-Algorithmus sowie auch für dessen Nutzung. Unter dieser Prämisse ist eine differenzierte Analyse der Daten – bezüglich ihres Werts respektive ihrer Aussagekraft im Sinne der Aufgabenstellung – beider Kategorien ein essentieller erster Schritt zur Sicherstellung der Vertrauenswürdigkeit von KI-basierten Anwendungen. Denn aufgrund ihrer hohen Relevanz entscheidet deren Auswahl und Qualität maßgeblich über das Ergebnis. Aus diesem Grund sollte es obligatorisch sein, entsprechend Positionen im Unternehmen zu konstituieren, die für das Modell der Datengewinnung und -nutzung zuständig sowie für die Kontrolle der ordnungsgemäßen Umsetzung verantwortlich sind. Gemäß vorgegebener Kriterien lässt sich der Standard der Datenqualität für KI-Systeme sowohl etablieren als auch validieren. Im Einzelnen sind dabei unter anderem Vollständigkeit, Repräsentativität, Nachvollziehbarkeit, Aktualität und Korrektheit zu berücksichtigen.

Vollständigkeit der Daten

Die Grundvoraussetzung für Vollständigkeit ist, dass ein Datensatz alle notwendigen Attribute und Inhalte enthält. Kann die Vollständigkeit der darin inkludierten Daten nicht garantiert werden, entsteht daraus potentiell das Problem von irreführenden Tendenzen, was letztendlich zu falschen oder diskriminierenden Ergebnissen führt. Dieses Phänomen tritt unter anderem bei Predictive Policing-Systemen auf: Wenn beispielsweise die Datenerhebung zu Kriminalitätsdelikten von vorneherein massiv in definierten Stadtvierteln stattfindet und dies im Kontext mit bestimmten Merkmalen wie Herkunft und Alter geschieht, ergibt sich daraus im Laufe der Zeit, dass dort bestimmte Bevölkerungsgruppen stärker überwacht und durch die häufiger durchgeführten Kontrollen letztendlich per se kriminalisiert werden. Der (vermeintliche) Tatbestand kann jedoch unter Umständen lediglich darauf basieren, dass entsprechende Vergleichswerte unter Berücksichtigung der gleichen Merkmalen aus anderen Stadtvierteln nicht im adäquaten Maße erhoben wurden. Vollständigkeit bedeutet somit keinesfalls, wahllos möglichst viele Daten zu erfassen – entscheidend ist die Auswahl.

Repräsentativität der Daten

Die Repräsentativität zeichnet sich dadurch aus, dass die Daten eine tatsächliche Grundgesamtheit und somit entsprechend die Realität abbilden, die stellvertretend im Sinne der Aufgabenstellung ist. Sind die Daten nicht repräsentativ, hat dies zur Folge, dass daraus ein Bias resultiert. Dieses Phänomen tritt beispielsweise im Recruiting von Führungskräften auf, wenn hier größtenteils Daten aus der Vergangenheit berücksichtigt werden und in dieser Zeit überwiegend Männer in Führungspositionen waren. Mit der Konsequenz, dass die KI-basierte Anwendung daraus folgern müsste, dass Männer für diese Positionen qualifizierter seien. Ergebnisse wie diese zeigen, dass durch KI-Systeme nicht zwangsläufig Objektivität erreichbar ist.

Manipulation von KI-Systemen
Manipulation von KI-SystemenBild: Prof. Dr. Norbert Pohlmann

Seiten: 1 2 3 4Auf einer Seite lesen

U.Coester
www.xethix-empowerment.de

Anzeige

Anzeige

Das könnte Sie auch Interessieren

Bild: FedEx
Bild: FedEx
33Mio.USD für Plus One Robotics

33Mio.USD für Plus One Robotics

Bild: FedEx Plus One Robotics, Entwickler von Bildverarbeitungssoftware für Logistikroboter, hat eine Serie-B-Finanzierung in Höhe von 33 Millionen US-Dollar erhalten. Die Finanzierung unterstützt die weitere Expansion in den USA und Europa sowie die weitere...