- Anzeige -
- Anzeige -
Technologiepartnerschaften
Wie aus Daten ein Geschäftsmodell wird
Aus Daten können mithilfe künstlicher Intelligenz neue Geschäftsmodelle und Produkte entstehen. Häufig fehlen Unternehmen aber Kompetenzen im Umgang mit KI, Big Data sowie Anwendungsfällen. Über die Zusammenarbeit in Geschäftsnetzwerken gelangt solches Wissen ins Projekt.
©Gorodenkoff/stock.adobe.com

Durch die fortschreitende Digitalisierung werden immer mehr Daten generiert: bei der Umstellung von Prozessen, in der computergestützten Arbeit, im Internet der Dinge, von vernetzten Maschinen und Anlagen oder bei der Erfassung der User Experience bei der Produktnutzung. Diese Daten sind oft entscheidender Teil der Wertschöpfung eines Unternehmens: Mithilfe von Methoden der künstlichen Intelligenz (KI) und des maschinellen Lernens können diese Daten analysiert und neue Erkenntnisse gewonnen oder bestehende Prozesse optimiert werden. Neue Geschäftsmodelle entstehen, mit denen sich Unternehmen einen Wettbewerbsvorteil gegenüber der Konkurrenz verschaffen können.

Wertschöpfungsnetzwerke als Beschleunigung

Die Covid-19-Pandemie wirkt als Katalysator der Digitalisierung und zeigt die Bedeutung der Plattformökonomie und der Kooperation von Unternehmen in Wertschöpfungsnetzwerken. Insbesondere zur Entwicklung neuer datengetriebener Anwendungen, die auf KI und maschinellem Lernen basieren, ist eine unternehmensübergreifende Vernetzung verschiedener Akteure im Sinne von Open Innovation vorteilhaft. Die Wertschöpfungsnetzwerke verschaffen den teilnehmenden Akteuren zum einen schnellen Zugang zu Kompetenzen und Technologien, die oft in den einzelnen Unternehmen nicht hinreichend vorhanden sind, und zum anderen ermöglichen sie, dass die Akteure ihre Daten über Unternehmens- und Branchengrenzen hinweg teilen. Dafür ist eine sichere und zuverlässige Infrastruktur für den geteilten Datenzugang und Datenaustausch eine Voraussetzung.

 Aufbau eines Wertschöpfungsnetzwerks, zu finden in: Plattform Lernende Systeme (Hrsg.): Von Daten zu Wertschöpfung: Potenziale von Daten- und KI-basierten Wertschöpfungsnetzwerken; München 2020.
Aufbau eines Wertschöpfungsnetzwerks, zu finden in: Plattform Lernende Systeme (Hrsg.): Von Daten zu Wertschöpfung: Potenziale von Daten- und KI-basierten Wertschöpfungsnetzwerken; München 2020.Bild: Acatech – Dt. Akademie der Technikwissenschaften

Datengetriebene Geschäftsmodelle entwickeln

Datenbasierte Geschäftsmodelle können Wettbewerbsvorteile erschließen. Doch was müssen Unternehmen beachten, um aus ihren Daten Grundlagen dafür zu schaffen? Und wie lassen sich diese Prozesse beschleunigen? So unterschiedlich Datenbestände und daraus resultierende Geschäftsmodelle auch sein mögen, die Unternehmen sind immer wieder mit den gleichen Fragen zu Datenformaten und Schnittstellen, Plattformen, Technologien, Anwendungen, Infrastruktur, Partnern sowie Zuverlässigkeit, Sicherheit und Einhaltung der gesetzlichen Anforderungen konfrontiert. Diese Fragen lassen sich zu drei Themenbereichen zusammenfassen: Wertschöpfungsnetzwerke und Ökosysteme, Umgang mit Daten sowie Technologien und Infrastrukturen.

1. Wertschöpfungsnetzwerke und Ökosysteme

Trotz starker hausinterner Kompetenzen im Umfeld des Maschinen- und Anlagenbaus verfügen derzeit nur wenige produzierende Unternehmen über ein ausreichendes Wissen im Umgang mit KI. Durch Kooperation mit geeigneten Partnern wird dieser Bedarf oft gedeckt. Bei einer geschickten Partnerauswahl und einer strategisch angelegten Zusammenarbeit, können nicht nur nachhaltig Kompetenzen im eigenen Unternehmen aufgebaut werden, sondern die Partner können auch gemeinsam an Kunden herantreten. Ein Beispiel hierfür ist ein Maschinenhersteller, der zusätzlich zur verkauften Maschine eine Dienstleistung für vorausschauende Wartung oder die Maschinenlaufzeit als Leistung im Verbund mit einem Softwarehersteller anbietet. Wichtig beim Aufbau eines Wertschöpfungsnetzwerks sind Transparenz, ein klar formuliertes Nutzenversprechen für alle Partner, langfristige Beziehungen gepaart mit Agilität in der Erstellung und Anpassung des Produktes sowie eine gemeinsame Strategie im Umgang mit Daten.

2. Umgang mit Daten

Ohne Zweck gesammelte Daten nutzen kaum etwas und große Mengen von ihnen können sogar signifikante Kosten verursachen. Wer sich im Rahmen eines Wertschöpfungsnetzwerks auf eine gemeinsame Datenbasis einigt, sollte in erster Linie Kriterien und Methoden für das Erfassen der Daten definieren. So bleiben die Datenmengen und die daraus resultierenden Kosten für die IT-Infrastruktur verhältnismäßig gering. Dazu legt man Regeln für einen nachvollziehbaren Umgang mit Daten unter den Partnern fest, insbesondere bei sensiblen Daten, welche auch einen Einfluss auf die Auswahl passender Technologien für Datenverarbeitung haben. In der Produktion ist zunehmend der hybride Ansatz der Datenverarbeitung (Edge und Cloud) beliebt. Bei diesem Ansatz wird ein Teil der Daten an der Maschine direkt analysiert und nicht an weitere Netzwerkpartner übermittelt. Neben einer einfacheren Kontrolle der Datensicherheit und der Reduktion der Kosten für Datenspeicherung bietet dieser Ansatz auch eine höhere Reaktivität der Anwendung. Im Falle eines selbstlernenden hybriden Monitorings findet das Training etwa für ein KI-Modell in der Cloud statt, die Erkennung der Anomalien erfolgt direkt auf den Edge-Geräten beinahe in Echtzeit. Die Entscheidungen rund um die Datenhandhabung haben einen direkten Einfluss auf die Auswahl der Technologien und damit verbundenen Infrastrukturen.

3. Technologien und Infrastrukturen

Kaufen oder selber bauen? Intern betreiben oder auslagern? Hier stehen Wirtschaftlichkeit und Haftungsfragen im Vordergrund. Datengetriebene Anwendungen auf eigene Faust rechtskonform zu entwickeln und zu betreiben, bedeutet neben einer hohen Investition gegebenenfalls auch eine längere Vorlaufzeit vor der Einführung der Lösung. In vielen Fällen ist es vorteilhafter, sich auf existierende Anwendungen und Technologien zu verlassen, sei es von kommerziellen Herstellern oder Open Source. Diese befolgen gängige Architekturen und Standards, konsolidieren Erfahrungen von unterschiedlichen Kunden, haben viele technische Herausforderungen bereits überwunden und arbeiten häufiger mit dem dem aktuellen Stand der Technik. Das gleiche gilt für Infrastrukturen. In jedem Partnernetzwerk sollte eine gemeinsame Strategie für die Einrichtung und Nutzung der technischen Infrastruktur erwogen werden, so dass nach außen eine gemeinsame Plattform und nicht mehrere Insellösungen sichtbar werden. Der Aufwand für die Entwicklung und den Betrieb datengetriebener Anwendungen, insbesondere im Fall der Anwendung des maschinellen Lernens, ist so groß, dass dieser Aufwand im Partnerverbund nur dann erbracht wird, wenn entweder ein wirtschaftliches Abhängigkeitsverhältnis besteht oder ein direkter Mehrwert vorliegt.

Innovation beschleunigen

Die zentrale Herausforderung für Groß- oder Kleinunternehmen auf dem Weg zur Wertschöpfung der Daten bleibt das Knowhow zu Anwendungsfällen, Big Data und KI. Digitale datengetriebene Wertschöpfungsnetzwerke und Verbunde zwischen technologieaffinen Start-ups, Forschungseinrichtungen und den produzierenden Unternehmen können die Innovation beschleunigen.

Acatech - Dt. Akademie der Technikwissenschaften
www.acatech.de
- Anzeige -

Das könnte Sie auch Interessieren