- Anzeige -
- Anzeige -
Technologiepartnerschaften
Wie aus Daten ein Geschäftsmodell wird
Aus Daten können mithilfe künstlicher Intelligenz neue Geschäftsmodelle und Produkte entstehen. Häufig fehlen Unternehmen aber Kompetenzen im Umgang mit KI, Big Data sowie Anwendungsfällen. Über die Zusammenarbeit in Geschäftsnetzwerken gelangt solches Wissen ins Projekt.
©Gorodenkoff/stock.adobe.com

Durch die fortschreitende Digitalisierung werden immer mehr Daten generiert: bei der Umstellung von Prozessen, in der computergestützten Arbeit, im Internet der Dinge, von vernetzten Maschinen und Anlagen oder bei der Erfassung der User Experience bei der Produktnutzung. Diese Daten sind oft entscheidender Teil der Wertschöpfung eines Unternehmens: Mithilfe von Methoden der künstlichen Intelligenz (KI) und des maschinellen Lernens können diese Daten analysiert und neue Erkenntnisse gewonnen oder bestehende Prozesse optimiert werden. Neue Geschäftsmodelle entstehen, mit denen sich Unternehmen einen Wettbewerbsvorteil gegenüber der Konkurrenz verschaffen können.

Wertschöpfungsnetzwerke als Beschleunigung

Die Covid-19-Pandemie wirkt als Katalysator der Digitalisierung und zeigt die Bedeutung der Plattformökonomie und der Kooperation von Unternehmen in Wertschöpfungsnetzwerken. Insbesondere zur Entwicklung neuer datengetriebener Anwendungen, die auf KI und maschinellem Lernen basieren, ist eine unternehmensübergreifende Vernetzung verschiedener Akteure im Sinne von Open Innovation vorteilhaft. Die Wertschöpfungsnetzwerke verschaffen den teilnehmenden Akteuren zum einen schnellen Zugang zu Kompetenzen und Technologien, die oft in den einzelnen Unternehmen nicht hinreichend vorhanden sind, und zum anderen ermöglichen sie, dass die Akteure ihre Daten über Unternehmens- und Branchengrenzen hinweg teilen. Dafür ist eine sichere und zuverlässige Infrastruktur für den geteilten Datenzugang und Datenaustausch eine Voraussetzung.

 Aufbau eines Wertschöpfungsnetzwerks, zu finden in: Plattform Lernende Systeme (Hrsg.): Von Daten zu Wertschöpfung: Potenziale von Daten- und KI-basierten Wertschöpfungsnetzwerken; München 2020.
Aufbau eines Wertschöpfungsnetzwerks, zu finden in: Plattform Lernende Systeme (Hrsg.): Von Daten zu Wertschöpfung: Potenziale von Daten- und KI-basierten Wertschöpfungsnetzwerken; München 2020.Bild: Acatech – Dt. Akademie der Technikwissenschaften

Datengetriebene Geschäftsmodelle entwickeln

Datenbasierte Geschäftsmodelle können Wettbewerbsvorteile erschließen. Doch was müssen Unternehmen beachten, um aus ihren Daten Grundlagen dafür zu schaffen? Und wie lassen sich diese Prozesse beschleunigen? So unterschiedlich Datenbestände und daraus resultierende Geschäftsmodelle auch sein mögen, die Unternehmen sind immer wieder mit den gleichen Fragen zu Datenformaten und Schnittstellen, Plattformen, Technologien, Anwendungen, Infrastruktur, Partnern sowie Zuverlässigkeit, Sicherheit und Einhaltung der gesetzlichen Anforderungen konfrontiert. Diese Fragen lassen sich zu drei Themenbereichen zusammenfassen: Wertschöpfungsnetzwerke und Ökosysteme, Umgang mit Daten sowie Technologien und Infrastrukturen.

1. Wertschöpfungsnetzwerke und Ökosysteme

Trotz starker hausinterner Kompetenzen im Umfeld des Maschinen- und Anlagenbaus verfügen derzeit nur wenige produzierende Unternehmen über ein ausreichendes Wissen im Umgang mit KI. Durch Kooperation mit geeigneten Partnern wird dieser Bedarf oft gedeckt. Bei einer geschickten Partnerauswahl und einer strategisch angelegten Zusammenarbeit, können nicht nur nachhaltig Kompetenzen im eigenen Unternehmen aufgebaut werden, sondern die Partner können auch gemeinsam an Kunden herantreten. Ein Beispiel hierfür ist ein Maschinenhersteller, der zusätzlich zur verkauften Maschine eine Dienstleistung für vorausschauende Wartung oder die Maschinenlaufzeit als Leistung im Verbund mit einem Softwarehersteller anbietet. Wichtig beim Aufbau eines Wertschöpfungsnetzwerks sind Transparenz, ein klar formuliertes Nutzenversprechen für alle Partner, langfristige Beziehungen gepaart mit Agilität in der Erstellung und Anpassung des Produktes sowie eine gemeinsame Strategie im Umgang mit Daten.

Seiten: 1 2Auf einer Seite lesen

Acatech - Dt. Akademie der Technikwissenschaften
www.acatech.de
- Anzeige -

Das könnte Sie auch Interessieren

Bild: Framos GmbH
Bild: Framos GmbH
Visuelles KI-Assistenzsystem

Visuelles KI-Assistenzsystem

Kameratechnik von Framos sorgt für höhere Sicherheit bei industriellen Fahrzeugen. - Bild: Framos GmbH Der Effizienzdruck in der Intralogistik ist hoch. Oft befinden sich in Lagerhallen zahlreiche Flurförderzeuge und Gabelstapler, die sich zwischen Arbeitern und...

Bild: ISW Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Bild: ISW Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Einsatz von KI beim Lichtbogenschweißen im automobilen Karosseriebau

Einsatz von KI beim Lichtbogenschweißen im automobilen Karosseriebau

Frequenzspektrum der hochauflösenden Originaldaten (links) und der um Faktor 1.000 komprimierten Daten (rechts). Bild: ISW Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen Unregelmäßigkeiten in einer Schweißnaht können zu einer...

Bild: Sick AG
Bild: Sick AG
KI per Cloud 
für Sick-Geräte

KI per Cloud für Sick-Geräte

Bild: Sick AG DStudio ist ein Webdienst von Sick, mit dem neuronale Netze trainiert werden können, die für verschiedene Sick-Geräte ausgelegt sind. Durch die einfache Benutzeroberfläche ist die Nutzung auch ohne fundierte KI-Kenntnisse möglich. Fortschritt und Erfolg...