Hyperpersonalisiertes Marketing
Kundendaten bündeln und KI-gestützt analysieren
Die Angebote von Firmen lassen sich so leicht wie nie zuvor miteinander vergleichen. Wenn sich Hersteller nur begrenzt über Preis oder Qualität vom Wettbewerb abheben können, wird die Kundenbindung eine wichtige Kenngröße. Dabei hilft hyperpersonalisiertes Marketing, indem es Käufern im richtigen Moment benötigte Informationen und Angebote ausspielt.
Bild: ©auremar/stock.adobe.com

Der Ansatz des hyperpersonalisierten Marketings kann als weiterentwickelte Form des personalisierten Marketings verstanden werden. Während hier jedoch meist lediglich erfasste Daten verarbeitet werden, geht es heute mehr darum, mittels künstlicher Intelligenz (KI) und in der Gesamtmenge an Daten innewohnende Muster und Zusammenhänge zu erkennen. Auf dieser Grundlage ist es möglich für Kunden individuelle Marketingaktionen und Angebote zu erstellen, die auf deren Interessen und Bedürfnissen zu diesem Zeitpunkt zugeschnitten sind. Die Datenanalyse ist umso aussagekräftiger, je mehr relevante Daten in die Auswertung einfließen. Sie sind in den Firmen auch reichlich vorhanden, oft isoliert in Form von unterschiedlichen Datensilos in den einzelnen Abteilungen – und lassen sich nur schwer miteinander verbinden und analysieren.

Weitreichend personalisiert

Kunden mit personalisierten E-Mails anzusprechen, ist mittlerweile auch im B2B-Sektor Standard. Immer mehr Unternehmenskunden erwarten von ihren Lieferanten und Dienstleistern sowohl individuelle, auf ihre spezifischen Belange zugeschnittene Informationen und Angebote als auch eine Multi-Channel-Kommunikation. Nur die Adress- und Namensdatenbank sowie Kauf- und Suchhistorien auszuwerten, stößt da schnell an Grenzen. Ein hyperpersonalisiertes Marketing könnte beispielsweise so ablaufen: Nachdem ein Unternehmen neue Rechentechnik gekauft und installiert hat, erhalten seine Mitarbeiter vom Lieferanten zusätzliche, individualisierte Informationen, etwa zu Schulungsangeboten, Upgrades oder Anwenderstatistiken – je nach persönlichem Bedarf und auf verschiedenen Wegen: von E-Mails über Social Advertising bis hin zu Pop-ups.

In den Kunden hineinblicken

Mit automatisiertem One-to-one-Marketing wollen Unternehmen etwa Streuverluste reduzieren, die Konversionsrate oder die Anzahl der Kaufabschlüsse steigern sowie das Up- und Cross-Selling intensivieren. Laut einer Studie des US-Unternehmens Epsilon kaufen vier von fünf Verbrauchern eher etwas, wenn ihnen der Anbieter personalisierte Angebote unterbreitet. Hinzu kommt, dass sich Käufer nachweislich enger an einen Anbieter oder eine Marke binden, wenn ihnen das Unternehmen vermittelt, sie zu kennen und ihre Wünsche in den Fokus zu stellen. Kanalübergreifende Interaktionen zwischen Anbieter und Kunden entlang der gesamten Customer Journey sind dabei sehr hilfreich. Grad und Qualität der Hyperpersonalisierung werden umso höher, je mehr relevante Daten in die Analyse einfließen. Im Endkundengeschäft sind dazu in einigen Unternehmen schon entsprechende KI-basierte Systeme implementiert. Onlineshops werten etwa verfügbare, maßgebliche Daten aus, um Kunden und Interessenten mit jeweils einzigartigen Angeboten zu locken. Dazu gehören Merk- und Wunschlisten, Informationen zu Retouren oder Kaufabbrüchen sowie zum Bestell- und Zahlungsverhalten des Käufers. Auch die Vergabe von Likes oder Kaufempfehlungen finden Beachtung – sowohl bei der Auswertung historischer Daten als auch in Form einer Empfehlung unmittelbar nach dem Klicken.

Customer Data Platforms

Eine der größten Hürden auf dem Weg zum hyperpersonalisierten Marketing im B2B-Segment ist die heterogene Datenbasis in den meisten Unternehmen. Die Daten und Informationen befinden sich verstreut als sogenannte Datensilos an mehreren Stellen im Unternehmen. Zum Teil wissen die einzelnen Abteilungen gar nicht, welche Daten neben ihren eigenen noch existieren. Hier setzen sogenannte Customer Data Platforms an, die Daten aus den verschiedenen Systemen zusammenführen, verknüpfen und anreichern. KI-gestützt lassen sich etwa in den Kundeninteraktionen und Nutzungsdaten Muster identifizieren, um neue Erkenntnisse zu gewinnen. Das führt bis hin zu einer sehr treffsicheren Vorhersage des künftigen Kundenverhaltens, um so beispielsweise abwanderungsbereite Kunden zu ermitteln und rechtzeitig Gegenmaßnahmen zu ergreifen. Die Daten dienen dazu, Segmente zu erstellen, um die Kunden gezielter – sprich hyperpersonalisiert – anzusprechen und relevante Produkte und Services zu empfehlen.

Grundsätzliche Überlegungen

Um auf ein hyperpersonalisiertes Marketing umzustellen, sind einige grundsätzliche Entscheidungen zu treffen:

Seiten: 1 2Auf einer Seite lesen

CRM Partners AG
http://www.crmpartners.com/de

Anzeige

Das könnte Sie auch Interessieren

Bild: Ametek GmbH - Creaform Deutschland GmbH
Bild: Ametek GmbH - Creaform Deutschland GmbH
Kostenfreies Webinar ‚Robot Vision‘

Kostenfreies Webinar ‚Robot Vision‘

Am Dienstag, den 28. September, findet ab 14 Uhr im Rahmen der inVISION TechTalks das kostenlose Webinar ‚Robot Vision‘ statt. In drei 20-minütigen Präsentationen stellen Wenglor, Vecow und Lucid Vision aktuelle Trends bei Software für die Roboterführung, KI-Plattformen für autonome geführte Robotik und Time-of-Flight-Kameras für Robotik und Automation vor.

Bild: Matrix Vision GmbH
Bild: Matrix Vision GmbH
KI-gestützte Sprunganalyse beim Trampolinturnen

KI-gestützte Sprunganalyse beim Trampolinturnen

Wenn es um Podiumsplätze geht, sind Millisekunden und Millimeter entscheidend. Diese Feinheiten sollen für Trampolin-Trainer und -Sportler des Deutschen Turner-Bundes (DTB) zukünftig über ein neues Projekt, welches auf einem bildbasierten System von Simi Reality Motion Systems basiert, visualisiert und dokumentiert werden. Für die passenden Videoaufnahmen sorgen Industriekameras von Matrix Vision.