- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: 3min
KI übernimmt Arbeit von Software-Ingenieuren

Jul 23, 2020 | Geschäftsprozesse

Für selbstadaptive Software gibt es heute unzählige Anwendungsmöglichkeiten. Doch die Entwicklung der Systeme stellt Software-Ingenieure vor neue Herausforderungen. Wissenschaftler vom Softwaretechnik-Institut Paluno an der Universität Duisburg-Essen (UDE) haben jetzt vielversprechende Ergebnisse mit neuartigen Verfahren der künstlichen Intelligenz (KI) erzielt, die den Entwicklungsprozess selbstadaptiver Systeme automatisieren.

Wir leben heute in einer schnelllebigen, vernetzten Welt. In dieser Welt wächst der Bedarf an selbstadaptiver Software, also Software, die in der Lage ist, sich selbstständig an wechselnde Umgebungssituationen anzupassen. Beispiele sind schwankende Übertragungsbandbreiten, eine wechselnde Anzahl von Nutzern oder sich ändernde Benutzerpräferenzen.

Schematische Darstellung eines Selbstadaptiven Systems und die Automatisierung durch Künstliche Intelligenz (in blau).
Schematische Darstellung eines Selbstadaptiven Systems und die Automatisierung durch Künstliche Intelligenz (in blau). – Bild: Paluno – The Ruhr Institute for Software Technology

Eine wesentliche Aufgabe bei der Entwicklung selbstadaptiver Software ist vorzugeben, wann und wie eine Anpassung erfolgen soll. Für Software-Ingenieure ist das schwierig, weil sie zum Zeitpunkt der Entwicklung meist nicht alle möglichen Umgebungssituationen der Software vorhersehen können. Dieser Herausforderung begegnen die Wissenschaftler aus der Paluno-Arbeitsgruppe von Prof. Klaus Pohl mit dem Einsatz von Online Reinforcement Learning, einem Verfahren der künstlichen Intelligenz. Die Idee dahinter: Die Software lernt selbst, welche Anpassung in welcher Situation die beste ist, indem sie Feedback zur Laufzeit sammelt und auswertet. Gute Anpassungen führen zu positivem Feedback, umgekehrt bedeuten schlechte Anpassungen ein negatives Feedback. So lernt die Software durch Ausprobieren, möglichst gutes Feedback zu sammeln. Damit wird die bisherige manuelle Tätigkeit der Software-Ingenieure, festzulegen wann und wie eine Anpassung erfolgen soll, von der Künstlichen Intelligenz übernommen.

Lernverhalten für selbstadaptive Web-Anwendung (rot = Verlauf der Höhe des Feedbacks; blau und schwarz = Änderung der Umgebungssituationen; grün = Adaptionen)

Lernverhalten für selbstadaptive Web-Anwendung (rot = Verlauf der Höhe des Feedbacks; blau und schwarz = Änderung der Umgebungssituationen; grün = Adaptionen).
Lernverhalten für selbstadaptive Web-Anwendung (rot = Verlauf der Höhe des Feedbacks; blau und schwarz = Änderung der Umgebungssituationen; grün = Adaptionen) Lernverhalten für selbstadaptive Web-Anwendung (rot = Verlauf der Höhe des Feedbacks; blau und schwarz = Änderung der Umgebungssituationen; grün = Adaptionen). – Bild: Paluno – The Ruhr Institute for Software Technology

„Bisherige Methoden des Online Reinforcement Learning haben jedoch noch einen Haken“, sagt Dr. Andreas Metzger, Leiter des Bereichs Adaptive Systeme bei Paluno. „Die sogenannte Explorationsrate muss manuell feinjustiert werden. Das ist die Wahrscheinlichkeit, dass die Software eine neue Anpassung ausprobiert, anstatt sich auf bekannte, sichere Anpassungen zu beschränken.“ Weil das auf Kosten der Automatisierbarkeit geht, setzt das Paluno-Team einen neuartigen Lernalgorithmus ein: Dieser wird Policy-based Reinforcement Learning genannt und kommt ohne eine Feinjustierung der Explorationsrate aus. Erste Tests bei selbstadaptiven Systemen aus den Bereichen des Geschäftsprozessmanagements und der Web-Anwendungen zeigten, dass die Software mit Hilfe dieses Algorithmus in der Lage ist, für unterschiedliche Umgebungssituationen jeweils geeignete Anpassungen zu lernen. Ihre Erkenntnisse wollen die Wissenschaftler nun auch für die Entwicklung von selbstadaptiven Transportmanagement-Systemen und Smart-Home-Systemen anwenden. Gemeinsam mit europäischen Partnern adressieren sie diese Bereiche in den EU-Projekten DataPorts und ENACT.

Autor:
Firma: Paluno - The Ruhr Institute for
www.paluno.uni-due.de

News

Weitere Beiträge

Das könnte Sie auch interessieren

ABB unterstützt betriebliche Optimierung mit Analyse- und KI-Software

Die ABB Ability Genix Industrial Analytics und AI Suite ist eine skalierbare Analyseplattform mit vorgefertigten, benutzerfreundlichen Anwendungen und Services. Damit werden Betriebs-, Engineering- und IT-Daten erfasst, kontextualisiert und in umsetzbare Informationen umgewandelt. So können industrielle Prozesse verbessert und das Management der Anlagen optimiert werden. Darüber hinaus können Geschäftsprozesse sicher und nachhaltig rationalisiert werden.

mehr lesen

KI-Vorreiter führen ihre KI-Initiativen trotz Corona unbeirrt fort

Unternehmen, die beim Thema künstliche Intelligenz (KI) führend sind, zeigen sich von der Corona-Pandemie unbeeindruckt: 78 Prozent der KI-Vorreiter unter den Unternehmen führen ihre KI-Initiativen wie vor der Pandemie fort, 21 Prozent haben deren Umsetzung sogar beschleunigt. Unter den Unternehmen, die KI noch nicht skalierbar einsetzen, fahren hingegen 43 Prozent ihrer Investitionen zurück und 16 Prozent haben ihre KI-Initiativen eingestellt. In Deutschland haben 44 Prozent der Unternehmen keine Änderungen vorgenommen, 8 Prozent die Geschwindigkeit erhöht und 19 Prozent ihre Initiativen aufgrund der unsicheren Lage eingestellt. Weiterhin verzeichnen Unternehmen mit skalierbaren KI-Anwendungen messbare Erfolge bei der Absatzsteigerung und der Reduzierung von Sicherheitsrisiken und Kundenbeschwerden. Zu diesen und weiteren Ergebnissen kommt die Studie ‚The AI Powered Enterprise: Unlocking the potential of AI at scale‘, für die 950 Unternehmen aus elf Ländern und elf Branchen befragt wurden.

mehr lesen

KI übernimmt Arbeit von Software-Ingenieuren

Für selbstadaptive Software gibt es heute unzählige Anwendungsmöglichkeiten. Doch die Entwicklung der Systeme stellt Software-Ingenieure vor neue Herausforderungen. Wissenschaftler vom Softwaretechnik-Institut Paluno an der Universität Duisburg-Essen (UDE) haben jetzt vielversprechende Ergebnisse mit neuartigen Verfahren der künstlichen Intelligenz (KI) erzielt, die den Entwicklungsprozess selbstadaptiver Systeme automatisieren.

mehr lesen

Wie wird künstliche Intelligenz zum Standardwerkzeug für den Mittelstand?

Das Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU möchte zusammen mit den produzierenden Unternehmen des Mittelstands die entscheidende Barriere für die Anwendung künstlicher Intelligenz überwinden: Die Köpfe sind überzeugt, aber die Umgestaltung der Produktionsanlagen und -prozesse in den Fabriken stockt. Deshalb arbeiten die Forscherinnen und Forscher an einem systematischen Leitfaden, mit dem KI zum Standardwerkzeug werden soll, das bessere Produkte mit geringerem Ressourceneinsatz ermöglicht. Erste Ergebnisse sind vielversprechend.

mehr lesen

Leistungsstarkes KI-System am KIT installiert

Als ein Werkzeug der Spitzenforschung ist künstliche Intelligenz (KI) heute unentbehrlich. Für einen erfolgreichen Einsatz – ob in der Energieforschung oder bei der Entwicklung neuer Materialien – wird dabei neben den Algorithmen zunehmend auch spezialisierte Hardware zu einem immer wichtigeren Faktor. Das Karlsruher Institut für Technologie (KIT) hat nun als erster Standort in Europa das neuartige KI-System NVIDIA DGX A100 in Betrieb genommen. Angeschafft wurde es aus Mitteln der Helmholtz Artificial Intelligence Cooperation Unit (HAICU).

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.