- Anzeige -
- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: min
Machine Learning kann Liquidität steigern

Nov 20, 2019 | Geschäftsprozesse

Intelligentes Forderungsmanagement

Machine Learning kann Liquidität steigern

Bild: ©peshkova/stock.adobe.com

Volle Auftragsbücher und trotzdem insolvent – dieses Schicksal kann selbst stabile Unternehmen ereilen, wenn ihre Großkunden nicht pünktlich zahlen. Dabei lässt sich die Liquidität sichern, wenn rechtzeitig die richtigen Infos bereitstehen. Machine Learning macht genau das jetzt automatisiert möglich.


Es kann viele Gründe geben, warum Kunden ihre Rechnungen nicht oder nur zögerlich begleichen. Meist liegt es an einer verspäteten Lieferung oder an mangelnder Produktqualität. Für den Lieferanten ist in jedem Fall ein schnelles und effektives Forderungsmanagement wichtig. Doch der idealtypische Prozess scheitert oft an der Realität. Im Normalfall sollten sämtliche offenen Zahlungen effizient – am besten automatisch – eingefordert werden. Der Rechnungsempfänger wird nicht nur rechtzeitig, sondern vor allem wirkungsvoll an seine Zahlungspflicht erinnert und um Erledigung gebeten.

Trotzdem steuern auch große Unternehmen diesen Prozess häufig noch mit veralteten Programmen, z.B. mit Tabellenkalkulation. „Diese vermeintlich kostengünstige Variante ist jedoch oft sehr ineffizient“, sagt Philipp Nies, Senior Consultant SAP Finance bei Deloitte. „Gerade im Forderungsmanagement zahlt es sich aus, die IT als wertschöpfend und nicht als Kostenfaktor zu betrachten.“

Tatsächlich spart man in Forderungsabteilungen vergleichsweise am häufigsten. Laut einer Studie schieben Unternehmen die Digitalisierung des Bereichs seit Jahren auf die lange Bank. Innovationen wie künstliche Intelligenz und Big-Data-Analysen bleiben anderen Geschäftsbereichen vorbehalten. Die Folge: Laut eigenen Aussagen haben 91 Prozent der Abteilungen heute Mühe, mit dem technologischen Wandel Schritt zu halten.

Was ein gutes Forderungsmanagement heute kann

Welche Vorteile hat ein integriertes Forderungsmanagement im Vergleich zu Excel und anderen ähnlichen Programmen? Es liefert eine zentrale Übersicht über alle Details eines Klärungsfalls. Die meisten Prozesse laufen automatisch nach definierten Regeln ab.

Statt sich in Kleinigkeiten zu verlieren, gewinnen Sachbearbeiter ein ganzheitliches Bild und damit mehr Kontrolle über die Abläufe. Außerdem können sie Verbindlichkeiten und Forderungen live überwachen. Entsprechend schnell können sie risikobehaftete Debitorengruppen ermitteln und auf Entwicklungen am Markt reagieren. Diese Transparenz macht sich letztlich in einem konstruktiveren und effizienteren Umgang mit den Kunden und einem insgesamt besseren Cashflow bemerkbar.

Unterwegs zum proaktiven Forderungsmanagement

Deloitte bietet mit „Reimagine Collections and Disputes“ eine contentbasierte Lösung an, die erstmals Machine Learning für das Forderungsmanagement nutzbar macht. Die Software automatisiert Prozesse, die bislang nur Menschen erledigen konnten und basiert auf SAP Leonardo.

Die Lösung prüft Daten wie die Historie von Kundentransaktionen oder die Zahl gelöster Klärungsfälle. So kann sie vorhersagen, wie wahrscheinlich eine Reklamation bei einer bestimmten Rechnung ist. Die Software stößt darüber hinaus automatisch Prozesse an, die dabei helfen, den Sachverhalt aufzuklären. Und sie lernt dazu, wird täglich intelligenter und präziser.

Autor:
Firma:
- Anzeige -

News

- Anzeige -

Weitere Beiträge

Das könnte Sie auch interessieren

Wie KI in der Krise Wirtschaftsleistung unterstützen kann

Künstliche Intelligenz hat einen großen Einfluss auf die Zeit in der Corona-Krise, aber auch nach der Krise ist sie sehr hilfreich. Claudia Bünte ist Expertin auf dem Gebiet der KI und Professorin für ‚International Business Administration‘ mit Schwerpunkt Marketing an der SRH in Berlin. 2016 gründete sie die Marketingberatung ‚Kaiserscholle – Center of Marketing Excellence‘ und berät Top-Manager in Kernfragen der Markenführung und des Marketings.

mehr lesen

Digitalisierung und künstliche Intelligenz optimieren Prozessanlagen

Digitalisierung und künstliche Intelligenz (KI) eröffnen auch in der Prozessautomatisierung Perspektiven für Einsparungen in allen Phasen des Lebenszyklus einer Anlage. Schon verfügbar ist ein digitales Feldgerät, das Festo Motion Terminal VTEM. Auch Dashboards von Festo visualisieren Anlagenzustände und selbst künstliche Intelligenz ist in der Prozessautomatisierung keine ferne Zukunftsmusik mehr.

mehr lesen

Künstliche Intelligenz gezielt in der Wertschöpfung einsetzen

Die Wettbewerbsfähigkeit deutscher produzierender Unternehmen hängt heute mehr denn je von der Fähig-keit ab, komplexen Herausforderungen wie volatilen Märkten effektiv zu begegnen. Insbesondere im industri-ellen Kontext ergeben sich durch eine stetig wachsende Datenverfügbarkeit sowie verbesserte Analysemög-lichkeiten erhebliche Potenziale: „Artificial Intelligence“ (AI), zu Deutsch „Künstliche Intelligenz“ (KI), ermög-licht die Verarbeitung großer Datenmengen und kann dabei helfen, Prognosen abzuleiten und die Entschei-dungsfindung zu erleichtern. Um diese Potenziale abrufen zu können, müssen Unternehmen befähigt wer-den, Künstliche Intelligenz in der Wertschöpfung gezielt einzusetzen.

mehr lesen

Quantensprung für die künstliche Intelligenz

Quantencomputer werden die künstliche Intelligenz und das Maschinelle Lernen tiefgreifend verändern und völlig neue Anwendungsmöglichkeiten erschließen. In einer Studie erläutern Experten der Fraunhofer-Allianz Big Data und künstliche Intelligenz gemeinsam mit wissenschaftlichen Partnern, wie Quantencomputer Verfahren des Maschinellen Lernens beschleunigen können und welche Potenziale ihr Einsatz in Industrie und Gesellschaft mit sich bringen wird. Die Studie stellt grundlegende Konzepte und Technologien des Quantencomputings vor, analysiert die aktuelle Forschungs- und Kompetenzlandschaft und zeigt Marktpotenziale auf.

mehr lesen

KI-Studie 2020: Das Fremdeln des Top-Managements mit KI

Künstliche Intelligenz ist eine wichtige Technologie, von der sich Unternehmen handfeste Wettbewerbsvorteile versprechen. Das ist das Ergebnis einer aktuellen Studie des IT-Dienstleisters Adesso unter Führungskräften. Konkrete Projekte haben allerdings bislang nur wenige Firmen umgesetzt. Besonders zurückhaltend zeigt sich bei dem Thema das Top-Management.

mehr lesen

„Ethik muss Teil des Entwicklungsprozesses sein“

Der zunehmende Einsatz künstlicher Intelligenz (KI) in der Entwicklung neuer Medizin-Technologien verlangt auch die verstärkte Berücksichtigung ethischer Aspekte. Ein interdisziplinäres Team der Technischen Universität München (TUM) spricht sich dafür aus, Ethik von Beginn an in den Entwicklungsprozess neuer Technologien zu integrieren. Alena Buyx, Professorin für Ethik der Medizin und Gesundheitstechnologien, erklärt den sogenannten ‚embedded ethics approach‘.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.