- Anzeige -
- Anzeige -
Qualitatives Labeln
Geschäftsprozessdaten mit maschinellem Lernen aufbereiten
Industriellen KI-Verfahren gehört die Zukunft. Die Herausforderung: Vorhandene Daten müssen für entsprechende Funktionalitäten zunächst aufbereitet - gelabelt - werden. Das trifft z.B. auf die Anwendung von KI-Methoden auf Geschäftsprozessdaten zu. Denn anders als in der Bilderkennung oder Sprachverarbeitung, bei denen die Bedeutung einmal gelabelter Datenmuster semantisch weitestgehend unverändert bleibt, sind die zu labelnden Muster in Geschäftsprozessdaten dynamisch und immer wieder anders strukturiert, etwa durch kontinuierlich wechselnde Auftragsmixe und Prozesszustände. Ein Labeln auf Basis manueller Datenanalyse ist in diesem Kontext extrem aufwändig und daher ungeeignet. Gesucht sind automatisierte Lösungsansätze, die auf bestehende Strukturen aufsetzen und die vorhandenen Daten passgenau aufbereiten.
Ebenenmodell der GeschäftsprozessDatenanalyse mit Deep Qualicision KI
Ebenenmodell der GeschäftsprozessDatenanalyse mit Deep Qualicision KI Bild: PSI FLS Fuzzy Logik & Neuro Systeme GmbH

Ein solches maschinelles Lernverfahren ist das Qualitative Labeln, das Bestandteil des Frameworks der Deep Qualicision KI ist. Dieses Lernverfahren kann auf der Behandlung von Key Performance Indicators (KPIs) beruhende Software um selbstlernende Labeling-Fähigkeiten erweitern. Zwischen den nicht aufbereiteten, rohen Geschäftsprozessdaten und Methoden der künstlichen Intelligenz schlägt das Verfahren auf diese Weise automatisiert eine algorithmische Brücke. Die Auswertung von Datenströmen bereitet rohe Geschäftsprozessdaten für Prozessverantwortliche in verständlicher Form auf. Daten aus diesen Prozessen werden mit KPIs qualitativ bewertet und Zusammenhänge daraus erlernt. So werden Geschäftsprozessdaten laufend qualitativ gelabelt und für den Einsatz weiterer KI-Methoden aufbereitet.

Einfacher Start

Der Start in die Anwendung von KI-Methoden ist damit denkbar einfach, denn die KPI-Zusammenhangsanalyse hilft, Geschäftsprozessdaten so einzuordnen, dass die Software aus rohen Daten Zusammenhänge lernt. Das qualitative Labeln der Geschäftsprozessdaten erfolgt mittels KPIs. Dabei besteht die Eingabe für die Software aus zwei Hauptkomponenten: Zum einen aus der Mitschrift von Datenströmen des zu analysierenden Geschäftsprozesses sowie deren automatischer Umwandlung in Zeitreihen mit Hilfe von Zeitstempeln. Zum anderen aus der Abstimmung zu den KPIs mit den für den Geschäftsprozess Verantwortlichen (POWN), anhand derer der betreffende Geschäftsprozess analysiert werden soll. Zusätzlich gilt es, die Wertebereiche der KPIs in gewünschte und nicht gewünschte einzuteilen.

KPI Anlagenauslastung

Ein KPI kann beispielsweise die Auslastung einer Anlage in einem produzierenden Betrieb sein. Erstrebenswert wäre dabei eine Auslastung größer 85 Prozent. Werte darunter sind dagegen negativ und können, je größer die Abweichung, als zunehmend ungünstig angesehen werden. Auch für Rüstzeiten sind ähnliche Vorgaben möglich: Ein Anteil der Rüstzeit mit unter zehn Prozent ist positiv, ein Anteil darüber negativ zu bewerten. @Zwischenüberschrift:Positive und negative Zusammenhänge

Die auswertbaren Zeitreihen entstehen, indem die Software die Datenströme sowie die zugehörigen KPIs mit Zeitstempeln versieht. Daraus erlernt das System positive und negative Zusammenhänge zwischen den KPIs. Diese Bewertung von anzustrebenden und von nicht anzustrebenden Bereichen kann ein Verantwortlicher auch ohne tiefergehende KI-Kenntnisse durchführen, da diese seiner alltäglichen Steuerung der Prozessabläufe entsprechen.

Weitere KI-Methoden

Das automatisierte Ableiten von qualitativen Erkenntnissen durch Lernen von Zusammenhängen aus rohen Geschäftsprozessdaten – angereichert mit Informationen über KPIs des Geschäftsprozesses – ist zudem nicht nur für die Erkenntnisgewinnung über den jeweiligen Geschäftsprozess nützlich. Vielmehr bereitet das Verfahren Unternehmen auf die anschließende Anwendung weiterer KI-Methoden zur Optimierung der Geschäftsprozesse vor. Jeder neu gewonnene Zusammenhang ist potenziell die Grundlage für eine weitere Kennzahl, die als KPI in die Deep-Qualicision-Analyse als Rückkopplung einfließen kann. So können Unternehmen Ihre Geschäftsprozesse nicht nur gezielt steuern, sondern diese nach und nach in de facto sich selbst optimierende Regelkreise überführen. Auf diese Art und Weise entsteht ein Weg in Richtung einer besseren Erklärbarkeit von Ergebnissen und Lösungsfindungsprozessen im Kontext des Maschinellen Lernens.

Wartung von Stromnetzen

In einem weiteren Use-Case kommt das qualitative Labeln zur selbstlernenden Ermittlung von Einstellparametern in einer Field-Force-Optimierung bei der Wartung und Entstörung von Stromnetzen zum Einsatz. Die diesbezüglichen KPIs beschreiben die Effizienz der Zuordnung von Mitarbeiterteams zu Maintenance-Einsätzen. Die Anzahl der KPIs, die für das Qualitative Labeln der Geschäftsprozessdaten zum Einsatz kommen, liegt bei circa dreißig. Pro Jahr sind mehr als einhunderttausend Wartungs- und Entstörungseinsätze auf Hunderte von Mitarbeitern zu verteilen. Das manuelle Labeln der Daten wäre mit zu hohem Aufwand verbunden. Das qualitative Labeln als erweiternde Funktionalität eines zuschaltbaren maschinellen Lernverfahrens im Rahmen einer Qualicision-basierten multikriteriellen Optimierung stattet in diesem Use-Case eine bereits laufende Anwendung mit lernenden Selbstjustierungen aus. Hierdurch kann die Optimierung selbst auf relevante Veränderungen in den Geschäftsprozessdaten reagieren und verlangt dies nicht etwa dem Anwender ab. Diese methodische Vorgehensweise lässt sich über alle Ebenen der Geschäftsprozesse einführen (vgl. Abbildung). Somit entsteht nach und nach eine KI-gerechte Architektur einer Analyse- und Nutzlogik, die beginnend mit den rohen Geschäftsprozessdaten über die Qualifizierung der Daten mittels KPIs und durch maschinelles Lernen das Aufdecken von Prozesszusammenhängen bereitstellt.

Neue Qualität der Datenauswertung

Über unterschiedliche Verdichtungen der Geschäftsprozessdaten entsteht eine neue Qualität der Datenauswertung für die Wertschöpfung im eigenen Unternehmen. Geschäftsprozessdaten werden hier zu Informationen und zum tatsächlich gelebten Rohstoff der Zukunft. Damit lässt sich ausgehend von Geschäftsprozessdaten deutlich besser der zunehmenden Dynamik der Geschäftsprozesse gerecht werden. Zudem erzeugen die nun auch für den Menschen verständlichen Informationen einen zusätzlichen Blick auf maschinell Gelerntes. es wird eine Brücke geschlagen zwischen KI-spezifischem Verfahrenswissen und dem Geschäftsprozesswissen – die Erklärbarkeit der Ergebnisse von ML-Verfahren auf Geschäftsprozessebene wird unterstützt.

PSI FLS Fuzzy Logik & Neuro Systeme GmbH
www.fuzzy.de
- Anzeige -
- Anzeige -

Das könnte Sie auch Interessieren

Bild: IFW
Bild: IFW
Maschinen fehlerlos einfahren

Maschinen fehlerlos einfahren

Transfer von Wissen zwischen Maschinen für die Überwachung - Bild: IFW Durch die Auswertung von Prozessdaten aus Werkzeugmaschinen können Fehler etwa beim Einfahren früh erkannt werden. Durch die Digitalisierung der Fertigung stehen dafür immer größere Datenmengen zur...

Bild: ITQ GmbH
Bild: ITQ GmbH
Website Relaunch

Website Relaunch

Bild: ITQ GmbH Die ITQ GmbH hat ihre Website vollständig überarbeitet. Interessierte Kunden und Bewerber finden mit wenigen Klicks alle Informationen zu den Kernkompetenzen Software und Systems Engineering, Mechatronic Consulting sowie Digital Education. Alle Bereiche...