KI in der Industrie 4.0 braucht den Faktor Mensch

Jun 26, 2019 | Fachartikel

KI in der Industrie 4.0 braucht den Faktor Mensch Der KI-Einsatz in der Massenproduktion und vor allem auch für die Losgröße 1 wird enorme positive Auswirkungen haben. McKinsey vergleicht KI bereits mit der Einführung der Dampfmaschine im 18. Jahrhundert und prognostiziert, dass bis 2030 rund 70 Prozent der Unternehmen eine KI-Anwendung einsetzen werden. Sie sollen […]

KI in der
Industrie 4.0
braucht den
Faktor Mensch

Der KI-Einsatz in der Massenproduktion und vor allem auch für die Losgröße 1 wird enorme positive Auswirkungen haben. McKinsey vergleicht KI bereits mit der Einführung der Dampfmaschine im 18. Jahrhundert und prognostiziert, dass bis 2030 rund 70 Prozent der Unternehmen eine KI-Anwendung einsetzen werden. Sie sollen die Produktivität steigern und Instandhaltung planbarer gestalten. Die ethische Dimension von KI bleibt bisher oftmals unterbelichtet. Dabei zeigt sich jedoch, dass KI ohne menschliche Intelligenz (noch) nicht möglich ist.

 (Bild: ©Wenjie Dong/istockphoto.com)

(Bild: ©Wenjie Dong/istockphoto.com)

Der Branchenverband Bitkom hat zur diesjährigen Hannover Messe 555 Unternehmen mit über 100 Mitarbeitern befragt und festgestellt, dass bisher nur zwölf Prozent der deutschen Industrieunternehmen bereits heute Künstliche Intelligenz (KI) im Zusammenhang mit Industrie 4.0 nutzen. Die Erwartungen an KI sind aber so groß, dass der Einsatz nun wohl exponentiell zunehmen dürfte. Vor allem erwarten die Industrieunternehmen, ihre Produktivität zu steigern, Vorausschauende Wartung und Instandhaltung zu verbessern sowie eine Optimierung ihrer Produktions- und Fertigungsprozesse. Die Befragten gaben zudem an, dass sie 2019 rund fünf Prozent ihres Umsatzes in die Digitalisierung investieren wollen. Die Hoffnungen richten sich auf die Realisierung von Smart Factories, in denen autonome Roboter mit Menschen zusammenarbeiten, dabei niemals müde werden und sogar die Fehler ihrer menschlichen Kollegen rechtzeitig erkennen und für Korrekturen sorgen. Wie im Auto von morgen soll KI in Robotern zusammen mit einer Unzahl von Sensorgen und Aktoren für eine autonome Aktion und Interaktion zwischen Maschinen und zwischen Menschen und Maschinen sorgen. Um dieses Ziel zu erreichen, müssen solche Systeme in Echtzeit große Datenmengen verarbeiten, Muster erkennen, Handlungsoptionen ableiten und umsetzen. Sie müssen also ähnlich wie KI heute schon in Wissenschaft, Medizin, Marketing und selbst für Juristen, zu vorgegebenen oder vorgefundenen oder gerade entstehenden Problemen Lösungen finden. Aber ist das, was in einer Smart Factory mit autonomen und KI-basierten Robotern heute bereits möglich ist, schon künstliche Intelligenz? Oder führt der Begriff in die Irre, wenn lediglich große Datenmengen mit immer leistungsfähigeren Rechnern ausgewertet werden?

Die aktuell verfügbaren KI-Anwendungen sind  trotz Machine Learning zum Glück noch nicht in der Lage, ihren durch den Algorithmus vorgegebenen Weg zu verlassen. (Bild: ©ipopba/istockphoto.com)

Die aktuell verfügbaren KI-Anwendungen sind trotz Machine Learning zum Glück noch nicht in der Lage, ihren durch den Algorithmus vorgegebenen Weg zu verlassen. (Bild: ©ipopba/istockphoto.com)

Was ist künstliche Intelligenz?

Künstliche Intelligenz orientiert sich am menschlichen Intelligenzbegriff und versucht, die Erkenntnis- und Entscheidungsfähigkeit des Menschen zu imitieren. Schon heute gelingt es zumindest, KI-Systeme intelligent erscheinen zu lassen. Sie sind in der Lage, große Datenmengen in kurzer Zeit mit von Menschen geschriebenen Algorithmen auf Muster hin zu analysieren. Algorithmen kommt hierbei eine Schlüsselfunktion zu. Darin sind Anweisungen definiert, um ein Problem systematisch zu lösen. Wie ein Bauplan oder eine Gebrauchsanweisung verfolgt der Algorithmus diesen einen und vorgegebenen Weg und führt zu einem eindeutigen Ergebnis. Um die Leistungsfähigkeit von KI zu steigern, entwickelten Neurowissenschaftler und Informatiker künstliche Neuronale Netze (KNN), die sich am biologischen Vorbild der Vernetzung von Neuronen im Gehirn orientieren. KNN sind in der Lage, sich jederzeit durch neue Informationen, die sie bei Lernprozessen ähnlich wie das Gehirn verarbeiten, neu zu vernetzen oder alte Verbindungen höher oder geringer zu gewichten oder vollständig aufzulösen. Durch die KNN sind auch KI-Algorithmen heute fähig, bei ihrer Anwendung zu ‚lernen‘ – sie können sich also selbständig weiterentwickeln. Dieser Prozess wird als Machine oder Deep Learning bezeichnet. Was der Mensch als Erkenntnis speichert, jederzeit erinnern und wieder anwenden kann, bedeutet bei den Maschinen, dass sie ihren Algorithmus ‚umschreiben‘, um die ihnen gestellten Aufgaben immer besser lösen zu können.

KI macht das, was man ihr sagt

Die aktuell verfügbaren KI-Anwendungen sind trotz Machine Learning zum Glück noch nicht in der Lage, ihren durch den Algorithmus vorgegebenen Weg zu verlassen. Eine KI, die Experten für die Tätigkeit eines Roboters in einer Fertigungslinie programmiert haben, ist nicht in der Lage, in einer anderen Umegbung zu arbeiten. Wissenschaftler bezeichnen diese als schwache KIs – und träumen von starken KIs. Noch ist es nicht gelungen, eine KI zu programmieren, die die intellektuellen Fähigkeiten des Menschen auch nur annähernd simulieren kann. Eine starke KI müsste in der Lage sein, logisch zu denken, Entscheidungen auch tatsächlich wie ein Mensch zu fällen, also abzuwägen z.B. zwischen zwei gleich schlechten Alternativen. Sie müsste sich planvoll neue Wissensgebiete erschließen und sich systematisch selbst anlernen. Vor allem aber müsste sie in natürlicher Sprache selbständig Ideen formulieren können und alle ihre Kompetenzen auch in ein Wertesystem einordnen und einem höheren oder ferneren Ziel unterordnen können. Kurzum: Sie müsste nach ethischen, moralischen und sozialen Kategorien ihr Verhalten und ihre Entscheidungen verantwortungsvoll selbst steuern. Das bedeutet: Ohne den Faktor Mensch wird es bei aller Dynamik der technologischen Entwicklung in der digitalen Transformation auf absehbare Zeit nicht gehen.

Seiten: 1 2 3Auf einer Seite lesen

www.tuv.com/de

News

Fachbeiträge

Weitere Fachbeiträge

Die Demokratisierung von maschinellem Lernen in der Industrie

Seit mehreren Jahren dringt die Digitalisierung immer weiter in die industrielle Produktion vor. Die Verheißungen, durch Datenerhebung und -analyse die eigene Effizienz und Produktivität zu steigern sowie neue datenbasierte Geschäftsmodelle zu entwickeln, klingen vielversprechend in einem Zeitalter, in dem die meisten Unternehmen auf der Suche nach neuen Wachstumsmöglichkeiten sind. Ein Bereich, dem ein enormes Potenzial zugeschrieben wird, ist künstliche Intelligenz bzw. Machine Learning. Ein Kommentar von Tobias Gaukstern, Leiter der Business Unit Industrial Analytics bei Weidmüller.

Entwicklungsprognose

Entwicklungsprognose Trends für die Fabrik der Zukunft Wohin entwickeln sich die Fabriken in den nächsten Jahren? Philipp Wallner von MathWorks wagt die Prognose, das fünf Faktoren darunter sein werden, die individuelles Fertigen und Ressourceneffizienz in Einklang...

Künstliche Intelligenz für Gebäude

Künstliche Intelligenz (KI) gilt als Schlüsseltechnologie der kommenden Jahre für die Bereiche Autonomes Fahren, Industrie 4.0 und Medizintechnik. Auch im Gebäudemanagement setzt man längst auf automatisierte Lösungen. Bei neuen Bauvorhaben wünschen sich Betreiber immer häufiger smarte Technologien. Gebäude werden mit einer Vielzahl an Sensoren ausgestattet: von IP-Kameras über Feuer- und Rauchmelder, Thermostatregler und weiteren Überwachungssystemen für Heiz-, Lüftungs- und Klimatechnik bis hin zu biometrischen Lesegeräten für die Zutrittskontrolle. All diese IP-Geräte werden mit jeder Entwicklungsstufe immer intelligenter. Werden sie alle mittels Software vernetzt, entsteht ein intelligentes Gebäude.

Cyber-Bedrohungen 2020

Fortgeschrittene KI und intelligente Bedrohungs-Desinformation Cyber-Bedrohungen 2020 Der Cybersecurity-Anbieter Fortinet hat die Prognosen von FortiGuard Labs zur Bedrohungslandschaft für 2020 veröffentlicht. Die Analysten von Fortinet zeigen darin Methoden, die...

Lernende Objekterkennung in Echtzeit

Heutige Inspektionsssteme sind auf wenige, sehr akkurat justierte Objekttypen herstellerseitig justiert. Kommen neue Produkttypen hinzu, müssen die Systeme zeitaufwendig neu justiert werden. Die KI-Inspektionsplatform von Gestalt Robotics beseitigt diese Hürden.

Maschinenlernen eingebettet

Bisher wird der gewünschte Zusammenhang zwischen den jeweiligen Eingangs- und Ausgangsdaten einer Automatisierungsbaugruppe mittels wissensbasierter Regeln in einer Hoch- oder SPS-Programmiersprache kodiert und auf einem eingebetteten System ausgeführt. In Zukunft lassen sich Embedded Systeme in der Automatisierung auch per Supervised Machine Learning für eine bestimmte Aufgabenstellung trainieren.

Zwischen Regelwerk und Selbstlernen

Nach einer Studie von Gartner soll bis 2022 der Geschäftswert von KI auf 2,85 Billionen Euro steigen. Der Löwenanteil davon wird voraussichtlich auf den Bereich der Kundenerfahrung entfallen, für das schon ausgereifte Tools am Markt existieren. Dieser Überblick zeigt, wie es heute um KI im Field Service Management steht und wohin die Reise geht.

Psychometrie im Vertrieb

Psychometrie im Vertrieb Souffleuse für das Verkaufsgespräch Ein neuer Trend in der Marketing-Kommunikation ist die KI-gestützte Stimmungsanalyse der Gesprächspartner: Sentimentanalysen in Verbindung mit Spracherkennung wie bei Amazons Alexa, IBM Watson, oder Google...

Direkte Roboteransteuerung

Direkte Roboteransteuerung Mit dem Ziel der direkten Roboteransprache über die neue Steuerung SmoothAi haben Mazak und namhafte Roboterhersteller ihre Zusammenarbeit intensiviert. Den Kern der SmoothAi machen drei wesentliche Eigenschaften aus: das so genannte Machine...

News

→ MEHR