- Anzeige -
Der digitale Zwilling im Fahrzeugbau
Wie mit Daten die Entwicklung beschleunigt werden kann Der digitale Zwilling im Fahrzeugbau Fahrzeugbauer erhalten Erkenntnisse über die Qualität und Fahrverhalten neuer Automodelle unter Realbedingungen. Die dabei gesammelten Daten bilden […]

Wie mit Daten die Entwicklung beschleunigt werden kann

Der digitale Zwilling im Fahrzeugbau

Bild: ©rook76/Fotolia.de

Fahrzeugbauer erhalten Erkenntnisse über die Qualität und Fahrverhalten neuer Automodelle unter Realbedingungen. Die dabei gesammelten Daten bilden jedoch immer häufiger die Basis für virtuelle Testumgebungen: Digitale Zwillinge erlauben die virtuelle Berechnung von Fahrphysik sowie einzelner Fahrzeugkomponenten bis hin zur Simulation ganzer Fahrereignisse. Moderne Data-Processing-Verfahren sind dabei nicht nur unabdingbar. Auf Grundlage der Datenauswertung kann das Fahrerlebnis optimiert und die Wartung erleichtert werden. Das Potenzial von Big Data aus dem PKW reicht bis hin zur Unterstützung autonomer Mobilitätsszenarien.


Je intelligenter – und damit in der gewünschten Konsequenz auch autonomer – Fahrzeuge und ihre On-Board-Systeme werden, umso mehr tritt auch das Thema Softwareentwicklung für die Automotive-Branche in den Fokus. Schon heute liegen Unmengen an digitalen Informationen vor, die von modernen Fahrzeugen produziert werden und deren Umfang künftig sicherlich weiterwachsen wird. Damit sind Themen wie Software Development, Machine Learning und Data Processing auch bei den Fahrzeugherstellern längst erfolgskritische Größen. Werden Informationen zum physischen Fahrverhalten des PKW unter verschiedensten Witterungsbedingungen und den Metadaten aus Design, Produktion und After-Sales mit synthetischen Ereignismodellen integriert, entstehen Simulationsumgebungen, die hohe Anforderungen an die Datenverarbeitung stellen. Die gute Nachricht ist, dass parallel zur schieren Datenmasse allerdings auch die Möglichkeiten zur Verarbeitung von Big Data wachsen.

Deutliche Effizienzsteigerungen im Messdatenmanagement

Gigantische Datenvolumina aus dem Auto, darunter auch non-binäre Signaldaten, lassen sich inzwischen besser und schneller parallel übertragen. Eine unabhängige Analyse unterschiedlichster Datenquellen, -typen und -klassen ist damit ebenfalls realisierbar. Ausgereifte Signal-Processing-Verfahren sorgen dafür, dass Daten auf bis zu zehn Prozent des ursprünglichen Volumens reduziert werden und die Datenbereitstellung daher mittlerweile um den Faktor 40 im Vergleich zu bisher eingesetzten Standardverfahren beschleunigt werden kann. Intelligente Big-Data-Verfahren haben gelernt, sowohl die immensen Datenmengen aus der Fahrzeugsensorik, als auch die dazugehörigen Backend-Logdateien flexibel und effizient zu verarbeiten. Damit können die Analyse und Auswertung von Testkennzahlen sowie die Ergebnisse aus Prüfstands-Experimenten mit einem zunehmend höheren Automatisierungsgrad durchgeführt werden. Der Einsatz von sogenannten Digitalen Mock-Ups (DMUs), also eines virtuellen Spiegelbilds des zugehörigen Fahrzeug-Backends, liefert stichhaltige Analysen, ohne ein neues Gerät direkt mit dem Fahrzeug in der Praxis testen zu müssen.

Unterschiedliche Formate verlangen nach einheitlicher Kodierung

Lange Zeit bestand im Messdatenmanagement die wesentliche Herausforderung darin, unterschiedliche Aufzeichnungsformate unter einen Hut zu bekommen und damit eine parallele Datenübertragung zu ermöglichen. Datentypen wie etwa ASAM MDF oder ATFX konnten für eine parallele Verarbeitung nicht genutzt werden. Diese Problematik wurde vor allem durch die Format- und Kodierungswechsel einzelner Samples hervorgerufen – ein Phänomen, das entsteht, wenn Signale aus den Sensoren und Geräten mit unterschiedlichen Nachrichtentypen und -frequenzen aufgezeichnet werden. Big Data Frameworks wie Hadoop können die strukturelle Heterogenität der Momentaufnahmen aus den Sensor-Clustern und Statusberichten der einzelnen Geräte kaum handhaben. Neuartige Verfahren, wie etwa Norcom Dasense oder Big Data Signal Processing (BDSP), schlüsseln die Simulationsdateien MDF4, DAT oder CSV oder die Trace-Formate ASC, ATFX, ADTF und VPCAP auf und wandeln sie in verteilte Formate wie beispielsweise ORC oder Parquet um. Sowohl die Transkodierung als auch die Analyse der Messdaten finden in einem skalierbaren Computer-Cluster statt – so können auch ad hoc schnell große Datenvolumen abgearbeitet werden. Die Reduzierung der Originaldaten auf zehn Prozent ihrer ursprünglichen Größe ist im Wesentlichen durch zwei Faktoren möglich: Zum einen verzichtet BDSP auf die Sample-basierte Darstellung der ursprünglichen Messdaten; zum anderen werden Signalredundanzen minimiert. Ein weiterer Vorteil einer intelligenten Transkodierung liegt darin, dass die umgewandelten Big-Data-Formate gleich die nötigen Berechnungsvorschriften erfüllen, um Analysen auf möglichst vielen Maschinen parallel durchführen zu können. Typische Engineering-Fragestellungen zu Steuerprozessen, On-Board-Funktionen und Fahrzeugverhalten können so binnen weniger Minuten beantwortet werden.

Seiten: 1 2Auf einer Seite lesen

- Anzeige -

Das könnte Sie auch Interessieren

Bild: Sick AG
Bild: Sick AG
KI per Cloud 
für Sick-Geräte

KI per Cloud für Sick-Geräte

Bild: Sick AG DStudio ist ein Webdienst von Sick, mit dem neuronale Netze trainiert werden können, die für verschiedene Sick-Geräte ausgelegt sind. Durch die einfache Benutzeroberfläche ist die Nutzung auch ohne fundierte KI-Kenntnisse möglich. Fortschritt und Erfolg...

Bild: Edag Group
Bild: Edag Group
Edag Tech Summit 2020

Edag Tech Summit 2020

Bild: Edag Group Der in den letzten 10 Monaten entwickelte fahrbare Prototyp zeigt das Potential der CityBots anschaulich am Anwendungsfall der Abfallbeseitigung auf. Dank künstlicher Intelligenz und Machine Learning haben Edag-Experten eine Objekterkennung...